## Mark scheme - Enthalpy

| Questic | on | Answer/Indicative content                                                                                                                                                                                                  | Marks              | Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1       | i  | 298 K/25°C<br><b>AND</b><br>100 kPa √                                                                                                                                                                                      | 1 (AO1.1)          | ALLOW 'a stated temperature'<br>To accept that other standard temperatures<br>can be used and 298 should strictly be added<br>as $\Delta H_{298} \theta$<br>ALLOW 1 × 10 <sup>5</sup> Pa, 101 kPa, 1.01 × 10 <sup>5</sup> Pa, 1<br>atm, 1 bar<br>Examiner's Comments<br>Only just over half of the candidates were able<br>to quote standard conditions for enthalpy<br>measurements. Errors included an incorrect<br>temperature, often 273 and 293 K, or incorrect<br>pressure (e.g. 1000 kPa, 100 atm). Candidates<br>are reminded that 'room temperature' is not a<br>standard temperature – a specific figure must<br>be stated.                                                                                                                                                                                          |
|         | ï  | FIRST, CHECK THE ANSWER ON ANSWER LINE<br>IF answer = (+)90 (kJ mol <sup>-1</sup> ) award 3 marks<br>IF answer = -90 (kJ mol <sup>-1</sup> ) award 2 marks<br>IF answer = (+)360 (kJ mol <sup>-1</sup> ) award 2 marks<br> | 3<br>(AO2.6×3<br>) | FULL ANNOTATIONS MUST BE USED         ALLOW ECF if common errors not seen         IF ΔH of -908 has NOT been used,         ONLY award 1st mark         COMMON ERRORS         1 mark       Incorrect signs(s) AND missing ÷4         ± (184 + 1452 + 908)         ±2544 from       ± (184 + 1452 + 908)         ±728 from       ± (184 + 1452 - 908)         ±2176 from       ± (-184 + 1452 - 908)         ±2176 from       - (-184 + 1452 - 908)         ±360 from       - (-184 + 1452 - 908)         ±182 from       ± (184 + 1452 - 908)         ±544 from       ± (-184 + 1452 - 908)         ±544 from       ± (-184 + 1452 - 908)         ±544 from       ± (-184 + 1452 - 908)         ± 544 from       ± (-184 + 1452 - 908)         ± 90 from       - (-184 + 1452 - 908)         = -360÷4       Examiner's Comments |

|   |   |                                                                                                                                                                                                |   | <b>Exemplar 6</b><br>Consistence is a whole number. $(p \in P, R = -100^{11})$<br>$MH_3 \times 4 + (46 \times h) = -159$<br>p = -962 + (160)<br>p = -1012<br>$k \times 242 = -1012$<br>$k \times 242 = -1012$<br>$M \to -1012$ |
|---|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |   | Total                                                                                                                                                                                          | 4 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2 | i | FIRST, CHECK THE ANSWER ON ANSWER LINE<br>IF $\Delta_r H = -457$ OR $-458$ (kJ mol <sup>-1</sup> ) award 4 marks<br>IF $\Delta_r H = \pm 229$ OR 457 (kJ mol <sup>-1</sup> ) award 3 marks<br> | 4 | FULL ANNOTATIONS MUST BE USEDALLOW ECF throughoutALLOW 2930 J OR 2.93 kJDO NOT ALLOW < 3 SF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   |   |                                                                                                                                                                                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| Image: Candidates are well-versed with the relationship $q = mcT$ and most were able to calculate that 2.026 Lof onergy was released in this reaction. It was also common to see the amount of AgNO, correctly calculated as 1.23<br>and the end of a multi-set to the equation to multi-physical set to a distribution of agNO correctly calculated as 1.202 With a set to the equation to match the "equation to match the "end of energy related from the amount of agNO, correctly calculated as 1.202 With a set to the set the moler quantities in the equation to match the "end of energy related from the amount of agNO, correctly calculated as 1.202 With a set to be given to a match and answer to the thread of a multi-set to be given to an appropriate number of significant figures. The execution set one data matches in the equation to match the "end of a multi-set physical set on a physical response for 3 of the available 4 marks. Many candidates are also advises introduces to be unavare that this reflects the least the existemicity of the excitemicity of the excitemic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1  |                                                              |   |                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--------------------------------------------------------------|---|--------------------------------------------------------------------------------------------|
| calculate that 2.926 kJ of ency was relaxed<br>in this reaction. It was also correctly calculated as 1.28<br>$\times$ 10 <sup>3</sup> mol. Candidates were expected to<br>determine the amount of encry released from<br>1 mol AgNO3 as 229 kJ and finally to multiple<br>this value by 2 or the molar quantities in the<br>equation to match the 'enthalpy change of<br>reaction. It was common to see — 229 given as<br>the final answer to the work this was releved the final<br>answer to be given to an appropriate number<br>of significant figures. Many candidates seemed<br>to be unavare that this reflects the least<br>significant figure provided in the data, in this<br>case 3 significant figures. Many candidates seemed<br>to be unavare that this reflects the least<br>significant figure provided in the data, in this<br>case 3 significant figures. The exampler show<br>a typical response for 3 of the available 4<br>marks. Many omitted the negative sign in their<br><i>AH</i> value to consider the exothermicity of the<br>reaction. Candidates are also adviced to my<br>round at the end of a multi-step calculation.<br>Rounding errors in the final answer.<br>Answer = -457 kJ mol <sup>-1</sup><br><b>Exempt 4</b><br><b>i</b> the data is the final answer.<br>Answer = -457 kJ mol <sup>-1</sup><br><b>Exempt 4</b><br><b>i</b> the data is the final answer.<br>Answer = -457 kJ mol <sup>-1</sup><br><b>Exempt 4</b><br><b>i</b> the data is the final answer.<br>Answer = -457 kJ mol <sup>-1</sup><br><b>Exempt 4</b><br><b>i</b> the data is the final answer.<br>Answer = -457 kJ mol <sup>-1</sup><br><b>Exempt 4</b><br><b>i</b> the data is the final answer.<br>Answer = -457 kJ mol <sup>-1</sup><br><b>Exempt 4</b><br><b>i</b> the data is the data is the data is the<br>intermed at the data is the final answer.<br>Answer = -457 kJ mol <sup>-1</sup><br><b>Exempt 4</b><br><b>i</b> the data is the data is the data is the data is the<br>intermed at the data is the data is the data is the data is the<br>intermed at the data is the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |                                                              |   | Candidates are well-versed with the                                                        |
| calculate that 2.826 kJ of energy varies each in this reaction. It was also correctly calculated as 1.28 × 10 <sup>-3</sup> mol. Candidates were expected to determine the amount of anegry released from 1 mol ApIO3 as 229 kJ and final to multiple to multiple this varies by the molar quantities in the equation to match the 'enthalpy ohange of reaction. It was common to see – 229 given as the equation to match the 'enthalpy ohange of reaction. It was common to see – 229 given as the final answer to be given to an appropriate number of significant figure schedules is given by 2 or the quastion to an appropriate number of significant figure and the schemicity of the reaction. It was common to see – 229 given as the schemic schedule is given by 2 or the quastion to an appropriate number of significant figure schedules is given by 2 or the quastion to an appropriate number of significant figure and the red of a multi-step calculation. Rounding of intermediate values introduces rounding errors in the final answer. Answer = –457 kJ mol <sup>-1</sup> Exempler 4 $\frac{1}{2 + 25 + 4 \times 9} = \frac{1}{2 + 35 \times 6 + 52} = \frac{1}{2 + 55 \times 6} = \frac{1}{2 + 55 \times 7} = \frac{1}{4 + 35 \times 6 + 52} = \frac{1}{2 + 55 \times 7} = \frac{1}{4 + 35 \times 6 + 52} = \frac{1}{2 + 55 \times 7} = \frac{1}{4 + 35 \times 6 + 52} = \frac{1}{2 + 55 \times 7} = \frac{1}{4 + 55 \times 7} = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |                                                              |   | relationship $q = mc\Delta T$ and most were able to                                        |
| in this reaction. It was also correctly calculated as 1.28         × 10 <sup>-3</sup> mol. Candidates were expected to determine the amount of AgNOs correctly calculated as 1.28         × 10 <sup>-3</sup> mol. Candidates were expected to determine the amount of energy released from 1 mol AgNOs acception and the equation to match the introlegy change of reaction. It was sommon to see -229 given as the final answer but this was released from 1 mol AgNOs acception and the required the final answer but this was released from the equation to be given to an appropriate number of significant figures. The exemptor allows a typical response for 3 of the actain, in this cases 3 significant figures. The exemptor shows a typical response for 3 of the actain, in this cases 3 significant figures movided in the data, in this case 3 significant figures. The exemptor shows a typical response for 3 of the actain, in this cases 3 significant figures movided in the data, in this case 3 significant figures. The exemptor shows a typical response for 3 of the actain, in this cases 3 significant figures movided in the data.         Agr (aq) + Cl' (aq) → AgCl(s) ✓       State symbols required         Agr (aq) + Cl' (aq) → AgCl(s) ✓       ALLOW AgNOs(aq) + NaCl(aq) → AgCl(s) + NaNOs(aq)         Allow AgNOs(aq) + NaCl(aq) → AgCl(s) ✓       ALLOW AgNOs(aq) + NaCl(aq) → AgCl(s) + NaNOs(aq)         Allow white precipitate AND AgNO3/Agr ALL reacted ✓       Cobservation needs to be linked to conclusion         White precipitate AND AgNO3/Agr ALL reacted ✓       Most candidates recognised that silver nitrate and chioride to recat use that for the action form a white precipitate Antb AgNO3/Agr ALL reacted ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |                                                              |   | calculate that 2.926 kJ of energy was released                                             |
| $\begin{bmatrix} i \\ i \end{bmatrix}$ $Ag^{r}(aq) + C\Gamma(aq) \rightarrow AgCl(s) \checkmark$ $ALLOW AgNO_{3}(aq) + NaC(aq) \rightarrow AgCl(s) \checkmark$ $Alt can be precipitate AND AgNO_{3}/Ag^{r} ALL reacted \checkmark$ $Ans can be linked to conclusion Agno 3a can be an any candidates recognised that silver nitrate and chindre tors receipting the form and the the matrix and the conclusion of the matrix and the the matrix and the negative silver of the targen and the matrix and the the matrix and the matrix $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |                                                              |   |                                                                                            |
| $\begin{bmatrix} i \\ i \end{bmatrix}$ $Ag^{r}(aq) + C\Gamma(aq) \rightarrow AgCl(s) \checkmark$ $ALLOW AgNO_{3}(aq) + NaC(aq) \rightarrow AgCl(s) \checkmark$ $Alt can be precipitate AND AgNO_{3}/Ag^{r} ALL reacted \checkmark$ $Ans can be linked to conclusion Agno 3a can be an any candidates recognised that silver nitrate and chindre tors receipting the form and the the matrix and the conclusion of the matrix and the the matrix and the negative silver of the targen and the matrix and the the matrix and the matrix $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |                                                              |   | amount of AgNO₃ correctly calculated as 1.28                                               |
| determine the amount of empty released on the second of singly to multiply to multiply this value by 20 for the molar quantities in the equation to match the enthing vhame of a grant of the account o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |                                                              |   |                                                                                            |
| $\left \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                                                              |   |                                                                                            |
| this value by 2 for the most quantities in the equation to match the enthalpy change of equation to see -229 given as the final answer to be given to an appropriate number of significant figures. Many candidates seems that this reflects the least significant figures by 2. The equation also required the final answer to be given to an appropriate number of significant figures. Many candidates seems that this reflects the least significant figures. Many candidates seems that this reflects the least significant figures. Many candidates seems that this reflects the least significant figures. Many candidates seems that the most the extinct of the available 4 marks. Many omitted the equation sign in their $\Delta H$ value to consider the exothermicity of the reaction. Candidates are also advised to only round at the end of a multi-see calculation. Rounding of intermediate values introduces rounding errors in the final answer. Answer = -457 kJ mol <sup>-1</sup> Evention at the event the set to be unaver to the set of the set to be unaver to the set of the set the set to be unaver to the set of the set to be unaver to be unaver to the set of the set o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |                                                              |   |                                                                                            |
| equation to match the 'enthalpy change of reaction'. It was common to see -229 given as the final answer to be given to an appropriate number of significant figures. Many candidates seemed to be unaware that this inside that also, in this case 3 significant figures. The exemplar shows a typical response for 3 of the available 4 marks. Many contided the eacthormicity of the reaction. Candidates are also advised to only round at the consider the exothermicity of the reaction. Candidates are also advised to only round at the exothermicity of the reaction. Candidates are also advised to only round at the exothermicity of the reaction. Candidates are also advised to only round at the exothermicity of the reaction. Candidates are also advised to only round at the exothermicity of the reaction. Candidates are also advised to only round at the second marks.Answer = -457 kJ mol <sup>-1</sup> Exemplar 4<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |                                                              |   |                                                                                            |
| $\begin{bmatrix} I \\ I $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                                                              |   |                                                                                            |
| $\begin{bmatrix} I \\ I \\ I \end{bmatrix}$ $\begin{bmatrix} A_{g'}(aq) + CI'(aq) \rightarrow AgCl(s) \checkmark$ $\begin{bmatrix} A_{g'}(aq) + CI'(aq) \rightarrow AgCl(s) \land$ $\begin{bmatrix} A_{g'}(aq) + CI'(aq) \rightarrow AgCl($                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |                                                              |   |                                                                                            |
| by 2. The question also required the final answer to be given to a paptropriate number of significant figures. Many candidates seemed to be unaware that this reflects the least significant figures. The exemplar shows a typical response for 3 of the available 4 marks. Many omitted the negative sign in their DAF value to consider the exothermicity of the reaction. Candidates are also advised to only round at the end of a multi-step calculation. Rounding of intermediate values introduces rounding errors in the final answer.<br>Answer = -457 kJ mol <sup>-1</sup> <b>Exemplar 4</b> $d_{1} + d_{1} = d_{2} + d_{2} + d_{3} + d_{4} = d_{4} = d_{4} = d_{4} = d_{4} + d_{4} = d_{4} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |                                                              |   | _                                                                                          |
| answer to be given to an appropriate number of significant figures. Many candidates seemed to be unaware that this reflects the least significant figures. The exemplar shows a typical response for 3 of the available 4 marks. Many omitted the negative sign in their $\Delta H$ value to consider the exotential of the available 4 marks. Many omitted the negative sign in their $\Delta H$ value to consider the exotential of the available 4 marks. Many omitted the negative sign in their $\Delta H$ value to consider the exotential of the overlap above a typical response for 3 of the available 4 marks. Many omitted the negative sign in their $\Delta H$ value to consider the exotential of the overlap and the negative sign in their $\Delta H$ value to an appropriate number of a multi-step calculation. Rounding of intermediate values introduces rounding errors in the final answer.<br>Answer = -457 kJ mol <sup>-1</sup> Exemplar 4 $\frac{1}{2} = \frac{1}{2000} = \frac{1}{10000} = \frac{1}{100000} = \frac{1}{100000} = \frac{1}{10000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |                                                              |   |                                                                                            |
| of significant figures. Many candidates seemed to be unaware that this reflects the least significant figures. The exemplar shows a typical response for 3 of the available 4 marks. Many omitted the negative sign in their $\Delta H$ value to consider the exothermicity of the reaction. Candidates are also advised to only round at the end of a multi-step calculation. Rounding of intermediate values introduces rounding errors in the final answer.<br>Answer = -457 kJ mol <sup>-1</sup><br><b>Exemplar 4</b><br>10 State symbols required and the end of a multi-step calculation. Rounding of intermediate values introduces rounding errors in the final answer.<br>Answer = -457 kJ mol <sup>-1</sup><br><b>Exemplar 4</b><br>10 State symbols required at the end of a multi-step calculation. Rounding errors in the final answer.<br>Answer = -457 kJ mol <sup>-1</sup><br><b>Exemplar 4</b><br>10 State symbols required at the end of a multi-step calculation. Rounding errors in the final answer.<br>Answer = -457 kJ mol <sup>-1</sup><br><b>Exemplar 4</b><br>10 State symbols required<br>11 Agr'(aq) + Cl <sup>-</sup> (aq) $\rightarrow$ AgCl(s) $\checkmark$<br>12 State symbols required<br>12 White precipitate AND AgNOs/Ag <sup>+</sup> NOT ALL reacted $\checkmark$<br>Not white precipitate AND AgNO3/Ag <sup>+</sup> ALL reacted $\checkmark$<br>13 Most candidates recognised that silver nitrate and chloride ions react together to form a white precipitate AND AgNO3/Ag <sup>+</sup> ALL reacted $\checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |                                                              |   |                                                                                            |
| to be unaware that this reflects the least<br>significant figures provided in the data, in this<br>case 3 significant figures provided in the data, in this<br>case 3 significant figures the exemplar shows<br>a typical response for 3 of the available 4<br>marks. Many omitted the negative sign in their<br>$\Delta H$ value to consider the exothermicity of the<br>reaction. Candidates are also advised to only<br>round at the end of a multi-step calculation.<br>Rounding of intermediate values introduces<br>rounding errors in the final answer.<br>Answer = -457 kJ mol <sup>-1</sup><br><b>Exempt 4</b><br><b>U</b> to the final answer.<br>Answer = -457 kJ mol <sup>-1</sup><br><b>Exempt 4</b><br><b>U</b> to the final answer.<br>$\Delta f = C^{1} (A_{1} + \gamma + 2k) = \sqrt{\alpha_{1}^{2} + \beta_{2}} = \sqrt{\beta_{1} + \gamma} + 2k} = \sqrt{\alpha_{1}^{2} + \beta_{2}} = \sqrt{\beta_{1} + \gamma} + 2k} = \sqrt{\alpha_{1}^{2} + \beta_{2}} = \sqrt{\beta_{1} + \gamma} + 2k} = \sqrt{\alpha_{1}^{2} + \beta_{2}} = \sqrt{\beta_{1} + \gamma} + 2k} = \sqrt{\alpha_{1}^{2} + \beta_{2}} = \sqrt{\beta_{1} + \gamma} + 2k} = \sqrt{\alpha_{1}^{2} + \beta_{2}} = \sqrt{\beta_{1} + \gamma} + 2k} = \sqrt{\alpha_{1}^{2} + \beta_{2}} = \sqrt{\beta_{1} + \gamma} + 2k} = \sqrt{\alpha_{1}^{2} + \beta_{2}} = \sqrt{\beta_{1} + \gamma} + 2k} = \sqrt{\alpha_{1}^{2} + \beta_{2}} = \sqrt{\beta_{1} + \gamma} + 2k} = \sqrt{\alpha_{1}^{2} + \beta_{2}} = \sqrt{\beta_{1} + \gamma} + 2k} = \sqrt{\alpha_{1}^{2} + \beta_{2}} = \sqrt{\beta_{1} + \gamma} + 2k} = \sqrt{\alpha_{1}^{2} + \beta_{2}} = \sqrt{\beta_{1} + \gamma} + 2k} = \sqrt{\alpha_{1}^{2} + \beta_{2}} = \sqrt{\beta_{1} + \gamma} + 2k} = \sqrt{\alpha_{1}^{2} + \beta_{2}} = \sqrt{\beta_{1} + \gamma} + 2k} = \sqrt{\alpha_{1}^{2} + \beta_{2}} = \sqrt{\beta_{1} + \gamma} + 2k} = \sqrt{\alpha_{1}^{2} + \beta_{2}} = \sqrt{\beta_{1} + \gamma} + 2k} = \sqrt{\alpha_{1}^{2} + \beta_{2}} = \sqrt{\beta_{1} + $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |                                                              |   |                                                                                            |
| $\begin{bmatrix} i \\ i \end{bmatrix} \begin{bmatrix} i $ |    |                                                              |   |                                                                                            |
| $\begin{array}{ c c } \hline \\ \hline $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |                                                              |   |                                                                                            |
| a typical response for 3 of the available 4<br>marks. Many outlied the negative sign in their<br>$\Delta H$ value to consider the exothermicity of the<br>reaction. Candidates are also advised to only<br>round at the end of a multi-step calculation.<br>Rounding of intermediate values introduces<br>rounding errors in the final answer.<br>Answer = -457 kJ mol <sup>-1</sup><br><b>Exempted</b><br>$a_{\rm mark} = -457 kJ mol^{-1}$<br><b>Exempted</b><br>$a_{\rm mark} = -457 kJ mol^{-1}$<br><b>Exempted</b><br><b>Exempted</b><br><b>Exempted</b><br><b>Exempted</b><br><b>Exempted</b><br><b>Exempted</b><br><b>Exempted</b><br><b>Exempted</b><br><b>Exempted</b><br><b>Exempted</b><br><b>Exempted</b><br><b>Exempted</b><br><b>Exempted</b><br><b>Exempted</b><br><b>Exempted</b><br><b>Exempted</b><br><b>Exempted</b><br><b>Exempted</b><br><b>Exem</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                                                              |   |                                                                                            |
| $\begin{array}{ c                                   $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |                                                              |   |                                                                                            |
| $\begin{bmatrix} i \\ i \end{bmatrix} \begin{bmatrix} Ag^*(aq) + Cl^*(aq) \rightarrow AgCl(s) \checkmark$ $Ag^*(aq) + Cl^*(aq) \rightarrow AgCl(s) \checkmark$ $Ag^*(aq) + Cl^*(aq) \rightarrow AgCl(s) \checkmark$ $AllLOW AgNO_3(aq) + NaCl(aq) \rightarrow AgCl(s) + NaNO_3(aq)$ $All Comparison of the comparison of the source of the transmission of transmission of the transm$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |                                                              |   |                                                                                            |
| reaction. Candidates are also advised to only<br>round at the end of a multi-step calculation.<br>Rounding or intermediate values introduces<br>rounding errors in the final answer.<br>Answer = -457 kJ mol <sup>-1</sup><br><b>Exemplar 4</b><br><sup>10</sup> Consideration and the end of a multi-step calculation.<br>Rounding errors in the final answer.<br>Answer = -457 kJ mol <sup>-1</sup><br><b>Exemplar 4</b><br><sup>10</sup> Consideration and the end of a multi-step calculation.<br>Rounding errors in the final answer.<br>Answer = -457 kJ mol <sup>-1</sup><br><b>Exemplar 4</b><br><sup>10</sup> Consideration and the end of a multi-step calculation.<br>Rounding errors in the final answer.<br>Answer = -457 kJ mol <sup>-1</sup><br><b>Exemplar 4</b><br><sup>10</sup> Consideration and the end of a multi-step calculation.<br>Rounding errors in the final answer.<br>Answer = -457 kJ mol <sup>-1</sup><br><b>Exemplar 4</b><br><sup>10</sup> Consideration and the end of a multi-step calculation.<br>Rounding errors in the final answer.<br>Answer = -457 kJ mol <sup>-1</sup><br><b>Exemplar 4</b><br><sup>10</sup> Consideration and the advised advised to the end of th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |                                                              |   |                                                                                            |
| round at the end of a multi-step calculation.<br>Rounding of intermediate values introduces<br>rounding errors in the final answer.<br>Answer = -457 kJ mol <sup>-1</sup><br><b>Exemplar 4</b><br>$\Im$ Control of the final answer.<br>Answer = -457 kJ mol <sup>-1</sup><br><b>Exemplar 4</b><br>$\Im$ Control of the final answer.<br>Answer = -457 kJ mol <sup>-1</sup><br><b>Exemplar 4</b><br>$\Im$ Control of the final answer.<br>Answer = -457 kJ mol <sup>-1</sup><br><b>Exemplar 4</b><br>$\Im$ Control of the final answer.<br>Answer = -457 kJ mol <sup>-1</sup><br><b>Exemplar 4</b><br>$\Im$ Control of the final answer.<br>Answer = -457 kJ mol <sup>-1</sup><br><b>Exemplar 4</b><br>$\Im$ Control of the final answer.<br>Answer = -457 kJ mol <sup>-1</sup><br><b>Exemplar 4</b><br>$\Im$ Control of the final answer.<br>Answer = -457 kJ mol <sup>-1</sup><br><b>Exemplar 4</b><br>$\Im$ Control of the final answer.<br>Answer = -457 kJ mol <sup>-1</sup><br><b>Exemplar 4</b><br>$\Im$ Control of the final answer.<br>Answer = -457 kJ mol <sup>-1</sup><br><b>Exemplar 4</b><br>$\Im$ Control of the final answer.<br>$\Im$ Control of the final answer.<br>Answer = -457 kJ mol <sup>-1</sup><br><b>Exemplar 4</b><br>$\Im$ Control of the final answer.<br>Answer = -457 kJ mol <sup>-1</sup><br><b>Exemplar 4</b><br>$\Im$ Control of the final answer.<br>Answer = -457 kJ mol <sup>-1</sup><br><b>Exemplar 4</b><br>$\Im$ Control of the final answer.<br>Answer = -457 kJ mol <sup>-1</sup><br><b>Exemplar 4</b><br>$\Im$ Control of the final answer.<br>AltLOW AgNO <sub>3</sub> (aq) + NaCl(aq) $\rightarrow$ AgCl(s) +<br>NaNO <sub>3</sub> (aq)<br>Not candidates recognised that silver nitrate<br>and chloride ions react together to form a<br>white precipitate, but many did not make the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |                                                              |   | -                                                                                          |
| Rounding of intermediate values introduces<br>rounding errors in the final answer.Answer = -457 kJ mol <sup>-1</sup> <b>Exempla 1</b><br>Image: Control $d_{1}$ bits<br>$d_{2}$ to be tradition the mass intermediate the solution.<br>$d_{2}$ to control $d_{2}$ bits<br>$d_{2}$ bits<br>$d_{2}$ to control $d_{2}$ bits<br>$d_{2}$ bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |                                                              |   | -                                                                                          |
| rounding errors in the final answer.<br>Answer = -457 kJ mol <sup>-1</sup><br>Exemplar 4<br>() Compared the interaction one in equation 21.<br>Compared to interaction 21.<br>Com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |                                                              |   | -                                                                                          |
| ii       Ag*(aq) + Cl^-(aq) $\rightarrow$ AgCl(s) $\checkmark$ iii       Ag*(aq) + Cl^-(aq) $\rightarrow$ AgCl(s) $\checkmark$ State symbols required       ALLOW AgNOs(aq) + NaCl(aq) $\rightarrow$ AgCl(s) + NaNos(aq)         iii       White precipitate AND AgNOs/Ag* ALL reacted $\checkmark$ 2       Examiner's Comments         Most candidates recognised that silver nitrate and choir a silver nitrate and choir dependent that the silver nitrate the silver nitrate and choir dependent that the silver nitrate that the silver nit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |                                                              |   | -                                                                                          |
| $\begin{bmatrix} i \\ i \end{bmatrix}$ $\begin{bmatrix} i \\ i \end{bmatrix}$ $Ag^{*}(aq) + CI^{-}(aq) \rightarrow AgCI(s) \checkmark$ $Ag^{*}(aq) + CI^{-}(aq) \rightarrow AgCI(s) \checkmark$ $\begin{bmatrix} i \\ ii \end{bmatrix}$ $Ag^{*}(aq) + CI^{-}(aq) \rightarrow AgCI(s) \checkmark$ $Ag^{*}(aq) + CI^{-}(aq) \rightarrow AgCI(s) \checkmark$ $ALLOW AgNO_{3}(aq) + NaCI(aq) \rightarrow AgCI(s) + NaNO_{3}(aq)$ $ALLOW AgNO_{3}(aq) + NaCI(aq) + NaCI(aq$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |                                                              |   |                                                                                            |
| ii       Ag*(aq) + Cl <sup>-</sup> (aq) $\rightarrow$ AgCl(s) $\checkmark$ iii       White precipitate AND AgNO3/Ag* ALL reacted $\checkmark$ ALLOW AgNO3(aq) + NaCl(aq) $\rightarrow$ AgCl(s) + NaNO3(aq)         2       Examiner's Comments         No white precipitate AND AgNO3/Ag* ALL reacted $\checkmark$ Deservation needs to be linked to conclusion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |                                                              |   | Answer = −457 kJ mol <sup>−1</sup>                                                         |
| Image: Construct of a proper duration of the set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |                                                              |   | Exemplar 4                                                                                 |
| $\begin{bmatrix} i \\ i \end{bmatrix} \begin{bmatrix} i $ |    |                                                              |   | ·                                                                                          |
| $\begin{bmatrix} i \\ i \end{bmatrix} \begin{bmatrix} i $ |    |                                                              |   | Assume that the density and specific heat capacity, c, of the solution are the same as for |
| $\begin{bmatrix} (1 + 2) + 4 + 18 + 24 & (1 + 24) + 18 + 24 & (1 + 24) + 18 + 24 & (1 + 24) + 18 + 24 & (1 + 24) + 18 + 24 & (1 + 24) + 18 + 24 & (1 + 24) + 18 + 24 & (1 + 24) + 18 + 24 & (1 + 24) + 18 + 24 & (1 + 24) + 18 + 24 & (1 + 24) + 18 + 24 & (1 + 24) + 18 + 24 & (1 + 24) + 18 + 24 & (1 + 24) + 18 + 24 & (1 + 24) + 18 + 24 & (1 + 24) + 18 + 24 & (1 + 24) + 18 + 24 & (1 + 24) + 18 + 24 & (1 + 24) + 18 + 24 & (1 + 24) + 18 + 24 & (1 + 24) + 18 + 24 & (1 + 24) + 18 + 24 & (1 + 24) + 18 + 24 & (1 + 24) + 18 + 24 & (1 + 24) + 18 + 24 & (1 + 24) + 18 + 24 & (1 + 24) + 18 + 24 & (1 + 24) + 18 + 24 & (1 + 24) + 18 + 24 & (1 + 24) + 18 + 24 & (1 + 24) + 18 + 24 & (1 + 24) + 18 + 24 & (1 + 24) + 18 + 24 & (1 + 24) + 18 + 24 & (1 + 24) + 18 + 24 & (1 + 24) + 18 + 24 & (1 + 24) + 18 + 24 & (1 + 24) + 18 + 24 & (1 + 24) + 18 + 24 & (1 + 24) + 18 + 24 & (1 + 24) + 18 + 24 & (1 + 24) + 18 + 24 & (1 + 24) + 18 + 24 & (1 + 24) + 18 + 24 & (1 + 24) + 24 & (1 + 24) + 24 & (1 + 24) + 24 & (1 + 24) + 24 & (1 + 24) + 24 & (1 + 24) + 24 & (1 + 24) + 24 & (1 + 24) + 24 & (1 + 24) + 24 & (1 + 24) + 24 & (1 + 24) + 24 & (1 + 24) + 24 & (1 + 24) + 24 & (1 + 24) + 24 & (1 + 24) + 24 & (1 + 24) + 24 & (1 + 24) + 24 & (1 + 24) + 24 & (1 + 24) + 24 & (1 + 24) + 24 & (1 + 24) + 24 & (1 + 24) + 24 & (1 + 24) + 24 & (1 + 24) + 24 & (1 + 24) + 24 & (1 + 24) + 24 & (1 + 24) + 24 & (1 + 24) + 24 & (1 + 24) + 24 & (1 + 24) + 24 & (1 + 24) + 24 & (1 + 24) + 24 & (1 + 24) + 24 & (1 + 24) + 24 & (1 + 24) + 24 & (1 + 24) + 24 & (1 + 24) + 24 & (1 + 24) + 24 & (1 + 24) + 24 & (1 + 24) + 24 & (1 + 24) + 24 & (1 + 24) + 24 & (1 + 24) + 24 & (1 + 24) + 24 & (1 + 24) + 24 & (1 + 24) + 24 & (1 + 24) + 24 & (1 + 24) + 24 & (1 + 24) + 24 & (1 + 24) + 24 & (1 + 24) + 24 & (1 + 24) + 24 & (1 + 24) + 24 & (1 + 24) + 24 & (1 + 24) + 24 & (1 + 24) + 24 & (1 + 24) + 24 & (1 + 24) + 24 & (1 + 24) + 24 & (1 + 24) + 24 & (1 + 24) + 24 & (1 + 24) + 24 & (1 + 24) + 24 & (1 + 24) + 24 & (1 + 24) + 24 & (1 + 24) + 24 & (1 + 24) + 24 & (1 + 24) + 24 & (1 + 24) + 24 & (1 + 24) + $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |                                                              |   | C=4.18 durity - t. ouders Q= mCAT                                                          |
| $\begin{bmatrix} i \\ i \end{bmatrix} \begin{bmatrix} Ag^{+}(aq) + CI^{-}(aq) \rightarrow AgCl(s) \checkmark$ $Ag^{+}(aq) + CI^{-}(aq) \rightarrow AgCl(s) \land$ $Ag^{+}(aq) + CI^{-}(aq) \rightarrow AgCl(s) \land$ $Ag^{+}(aq) + CI^{-}(aq) \rightarrow AgCl(s) \land$ $Ag^{+}(aq) + CI^{-}(aq) \rightarrow AgCl(s) \rightarrow$ $Ag^{+}(aq) + CI^{-}(aq) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |                                                              |   | (2 = 13 × 4.18 × 28 N=AF N=CU                                                              |
| $\frac{1}{10} = \frac{1}{10} + \frac{1}{10} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |                                                              |   | $Q = 2926 J$ $p = \frac{25}{\times 0.5/2}$                                                 |
| $\frac{2.326}{6.017} = 428-60 = 223.59336$ $\frac{2.326}{6.017} = 428-60 = 223.59336$ $Ag^{+} = -22.3$ $Ag^{+} = -2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |                                                              |   | Q= 2.926 kJ                                                                                |
| iiAg^+(aq) + Cl^-(aq) $\rightarrow$ AgCl(s) $\checkmark$ ALLOW AgNO_3(aq) + NaCl(aq) $\rightarrow$ AgCl(s) +<br>NaNO_3(aq)iiiAg^+(aq) + Cl^-(aq) $\rightarrow$ AgCl(s) $\checkmark$ Observation needs to be linked to conclusioniiiWhite precipitate AND AgNO_3/Ag^+ NOT ALL reacted<br>OR<br>NO white precipitate AND AgNO_3/Ag^+ ALL reacted $\checkmark$ 2 <b>2</b> Examiner's Comments<br>Most candidates recognised that silver nitrate<br>and chloride ions react together to form a<br>white precipitate, but many did not make the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |                                                              |   |                                                                                            |
| iiAg^+(aq) + Cl^-(aq) $\rightarrow$ AgCl(s) $\checkmark$ ALLOW AgNO_3(aq) + NaCl(aq) $\rightarrow$ AgCl(s) +<br>NaNO_3(aq)iiiAg^+(aq) + Cl^-(aq) $\rightarrow$ AgCl(s) $\checkmark$ Observation needs to be linked to conclusioniiiWhite precipitate AND AgNO_3/Ag^+ NOT ALL reacted<br>OR<br>NO white precipitate AND AgNO_3/Ag^+ ALL reacted $\checkmark$ 22Examiner's Comments<br>Most candidates recognised that silver nitrate<br>and chloride ions react together to form a<br>white precipitate, but many did not make the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                                                              |   |                                                                                            |
| iiAg^+(aq) + Cl^-(aq) $\rightarrow$ AgCl(s) $\checkmark$ ALLOW AgNO_3(aq) + NaCl(aq) $\rightarrow$ AgCl(s) +<br>NaNO_3(aq)iiiAg^+(aq) + Cl^-(aq) $\rightarrow$ AgCl(s) $\checkmark$ Observation needs to be linked to conclusioniiiWhite precipitate AND AgNO_3/Ag^+ NOT ALL reacted<br>OR<br>NO white precipitate AND AgNO_3/Ag^+ ALL reacted $\checkmark$ 22Examiner's Comments<br>Most candidates recognised that silver nitrate<br>and chloride ions react together to form a<br>white precipitate, but many did not make the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                                                              |   | a second                                                                                   |
| iiAg^+(aq) + Cl^-(aq) $\rightarrow$ AgCl(s) $\checkmark$ ALLOW AgNO_3(aq) + NaCl(aq) $\rightarrow$ AgCl(s) +<br>NaNO_3(aq)iiiAg^+(aq) + Cl^-(aq) $\rightarrow$ AgCl(s) $\checkmark$ Observation needs to be linked to conclusioniiiWhite precipitate AND AgNO_3/Ag^+ NOT ALL reacted<br>OR<br>NO white precipitate AND AgNO_3/Ag^+ ALL reacted $\checkmark$ 2 <b>2</b> Examiner's Comments<br>Most candidates recognised that silver nitrate<br>and chloride ions react together to form a<br>white precipitate, but many did not make the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |                                                              |   |                                                                                            |
| iiAg^+(aq) + Cl^-(aq) $\rightarrow$ AgCl(s) $\checkmark$ NaNO <sub>3</sub> (aq)iiiWhite precipitate AND AgNO <sub>3</sub> /Ag^+ NOT ALL reacted<br>OR<br>NO white precipitate AND AgNO <sub>3</sub> /Ag^+ ALL reacted $\checkmark$ Deservation needs to be linked to conclusion2Examiner's Comments<br>Most candidates recognised that silver nitrate<br>and chloride ions react together to form a<br>white precipitate, but many did not make the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |                                                              |   | ∆ <i>H</i> = <i>K</i> . <sup>-</sup> . <sup>-</sup>                                        |
| Ii       State symbols required       Observation needs to be linked to conclusion         Iii       White precipitate AND AgNO <sub>3</sub> /Ag <sup>+</sup> NOT ALL reacted OR       Examiner's Comments         NO white precipitate AND AgNO <sub>3</sub> /Ag <sup>+</sup> ALL reacted ✓       Most candidates recognised that silver nitrate and chloride ions react together to form a white precipitate, but many did not make the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |                                                              |   |                                                                                            |
| ii       State symbols required       Observation needs to be linked to conclusion         iii       White precipitate AND AgNO <sub>3</sub> /Ag <sup>+</sup> NOT ALL reacted OR       Most candidates recognised that silver nitrate and chloride ions react together to form a white precipitate, but many did not make the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |                                                              |   |                                                                                            |
| ii       State symbols required       Observation needs to be linked to conclusion         iii       White precipitate AND AgNO <sub>3</sub> /Ag <sup>+</sup> NOT ALL reacted OR       Examiner's Comments         NO white precipitate AND AgNO <sub>3</sub> /Ag <sup>+</sup> ALL reacted ✓       Most candidates recognised that silver nitrate and chloride ions react together to form a white precipitate, but many did not make the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |                                                              |   |                                                                                            |
| ii       White precipitate AND AgNO <sub>3</sub> /Ag <sup>+</sup> NOT ALL reacted OR       2       Examiner's Comments         NO white precipitate AND AgNO <sub>3</sub> /Ag <sup>+</sup> ALL reacted √       Most candidates recognised that silver nitrate and chloride ions react together to form a white precipitate, but many did not make the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |                                                              |   |                                                                                            |
| White precipitate AND AgNO <sub>3</sub> /Ag <sup>+</sup> NOT ALL reacted       Examiner's Comments         OR       NO white precipitate AND AgNO <sub>3</sub> /Ag <sup>+</sup> ALL reacted √       Most candidates recognised that silver nitrate and chloride ions react together to form a white precipitate, but many did not make the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    | State symbols required                                       |   | Observation needs to be linked to conclusion                                               |
| OR<br>NO white precipitate AND AgNO3/Ag <sup>+</sup> ALL reacted √<br>Most candidates recognised that silver nitrate<br>and chloride ions react together to form a<br>white precipitate, but many did not make the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ii |                                                              | 2 |                                                                                            |
| NO white precipitate AND AgNO3/Ag <sup>+</sup> ALL reacted √ Most candidates recognised that silver nitrate and chloride ions react together to form a white precipitate, but many did not make the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |                                                              |   | Examiner's Comments                                                                        |
| and chloride ions react together to form a<br>white precipitate, but many did not make the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |                                                              |   |                                                                                            |
| white precipitate, but many did not make the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    | NU white precipitate AND AgNO3/Ag <sup>+</sup> ALL reacted √ |   | _                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |                                                              |   | -                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |                                                              |   |                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |                                                              |   | link between this observation and whether any                                              |
| silver nitrate was left unreacted. Many                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |                                                              |   | silver nitrate was left unreacted. Many                                                    |

|   |   |    |                                                                                                                                                             |   | candidates did not give a correct equation,<br>with missing or incorrect state symbols being<br>common. This question discriminated<br>extremely well.                                                                                                                                                                                                                                                 |
|---|---|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |   |    | Total                                                                                                                                                       | 6 |                                                                                                                                                                                                                                                                                                                                                                                                        |
|   |   |    | FIRST CHECK ON ANSWER LINE<br>If answer = (+) 431.5 (kJ mol <sup>−1</sup> ) award 2 marks<br>If answer = −431.5 (kJ mol <sup>−1</sup> ) award 1 mark (wrong |   | ALLOW to 3 SF i.e. 432                                                                                                                                                                                                                                                                                                                                                                                 |
| 3 | а |    | sign)<br>2 × H–C/ bond enthalpy correctly calculated                                                                                                        | 2 | <b>ALLOW</b> 1 mark for (+)247.5 / 248<br>(wrong expression) i.e. (436+243-184)/2                                                                                                                                                                                                                                                                                                                      |
|   |   |    | = +436 +243 +184 = +863 (kJ mol <sup>-1</sup> ) √<br>H–C/ bond enthalpy correctly calculated                                                                |   | Examiner's Comments                                                                                                                                                                                                                                                                                                                                                                                    |
|   |   |    | +863/2 = (+)431.5 (kJ mol <sup>-1</sup> ) √                                                                                                                 |   | Most candidates made a good attempt at this question. The most common mistake was to use the wrong sign when incorporating the enthalpy change into the calculation, or not to                                                                                                                                                                                                                         |
|   | b | i  | $Br_2(I) \rightarrow Br_2(g) \checkmark$                                                                                                                    | 1 | incorporate it at all.<br><b>Examiner's Comments</b><br>A good attempt by many candidates but some<br>lost marks by having the wrong state of<br>bromine, even though the question stated it<br>was a liquid changing to a gas. Many added<br>water or oxygen, some confused the equation<br>with bond enthalpy and answers such as $Br_{2}(I)$<br>$\rightarrow 2Br_{(g)}$ were commonly seen.         |
|   |   | ii | Endothermic<br>AND<br>Energy required to overcome induced dipole–dipole<br>forces/London forces √                                                           | 1 | Mark independently of 3 (d) (i)<br>ALLOW endo to break intermolecular<br>forces/bonds<br>ALLOW bonds between molecules<br>DO NOT ALLOW van der Waals' forces<br><u>Examiner's Comments</u><br>The majority of candidates answered this<br>question incorrectly. Only 10% of candidates<br>mentioned intermolecular/London forces. Most<br>stated 'exothermic' or described breaking<br>covalent bonds. |
|   |   |    | Total                                                                                                                                                       | 4 |                                                                                                                                                                                                                                                                                                                                                                                                        |



|   |    | = 6.79 × 10 <sup>7</sup> (kJ) √<br>standard form <b>AND</b> 3 SF required                                                                                  |   | $1.09 \times 10^9$ (× 4 instead of ÷ 4)3 marks $2.72 \times 10^8$ (no ÷ 4)3 marks $6.79 \times 10^1$ (no tonnes $\rightarrow$ g)3 marks                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---|----|------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |    |                                                                                                                                                            |   | <b>Examiner's Comments</b><br>Most candidates were able to convert from tonnes to moles and then went on to complete the majority of the calculation steps. Many omitted to divide by 4 and were credited 3 marks. Some candidates lost marks by not stating the answer to standard form or quoted their answer to more than 3 significant figures. A number of candidates attempted to use $Q = mc\Delta T$ and did not get very far in the calculation.                                                                                                           |
|   |    | Total                                                                                                                                                      | 6 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 5 | i  | (because energy is needed to break) induced dipole–<br>dipole interactions / London forces between molecules<br>(1)                                        | 1 | allow forces of attraction between molecules<br>OR van der Waals' forces<br>ignore reference to strong or weak                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   | ii | Bond breaking (+193) + (+151) = (+)344<br><b>AND</b><br>Bond making 2(-175) = (-)350 (1)<br>$\Delta_t H = \frac{(+344) + (-350)}{2} = -3 (kJ mol^{-1})(1)$ | 2 | Correct answer scores 2 marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   |    | Total                                                                                                                                                      | 3 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 6 | i  | <b>More</b> energy is <b>released</b> by <b>forming</b> bonds<br>than energy <b>required</b> when <b>breaking</b> bonds √                                  | 1 | ORA<br>Response needs link between energy,<br>breaking and making bonds<br>ALLOW 'bond breaking is endothermic'<br>AND 'bond making is exothermic'<br>ALLOW within labelled energy diagram<br>Examiner's Comments<br>Able candidates provided well- constructed<br>and structured responses, which demonstrated<br>their clear understanding of this key concept.<br>Weaker candidates often responded in terms<br>of bond making requiring energy and that<br>breaking bonds releasing energy. Many<br>responses referred to more bonds instead of<br>more energy. |
|   |    | FIRST, CHECK THE ANSWER ON ANSWER LINE<br>IF bond enthalpy = (+)612 (kJ mol <sup>-1</sup> ) award 3 marks                                                  | 3 | FULL ANNOTATIONS MUST BE USED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

|   |   | Enerous            | for bonds made (4 ×                             | C=O + 4                                                      |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---|---|--------------------|-------------------------------------------------|--------------------------------------------------------------|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |   | × O–H)             | ioi bonus indue (4 ^                            |                                                              |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   |   | OR<br>OR           | 4 × 805 + 4 × 46<br>3220 + 1856<br>5076 (kJ) √  | 4                                                            |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   |   | Energy f<br>× O=O) | for bonds broken (4                             | × C–H + 3                                                    |   | IGNORE sign                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   |   | OR<br>OR           | 4 × 413 + 3 × 494<br>1652 + 1494<br>3146 (kJ) √ | 8                                                            |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   |   | C=C bor            | nd enthalpy correctly                           | ∕ calculated                                                 |   | IGNORE sign                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   |   |                    | bond enthalpy                                   | = -1318 - 3146<br>+ 5076                                     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   |   |                    |                                                 | = (+)612 kJ mol <sup>-1</sup> √<br><i>Mark is for answer</i> |   | ALLOW ECF<br>DO NOT ALLOW – sign                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |   |                    |                                                 |                                                              |   | COMMON ERRORS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   |   |                    |                                                 |                                                              |   | + 2106 omission of 3O=O 2 marks<br>-3248 -1318 + 3146 - 5076 2 marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   |   |                    |                                                 |                                                              |   | <b>Examiner's Comments</b><br>This question tested both chemical and<br>mathematical ability. Two marks were<br>available for calculating the energies involved<br>in bond making and bond breaking. Many<br>candidates miscounted the number of bonds<br>involved in the calculation, especially for $3 \times$<br>O=O and<br>$4 \times O$ -H. Candidates can avoid this error by<br>drawing out each molecule and counting the<br>bonds being broken and made.<br>In calculating the bond enthalpy, weaker<br>candidates often omitted the enthalpy change<br>of reaction, -1318 kJ mol <sup>-1</sup> , instead simply<br>subtracting the energies already calculated for<br>bonds broken and bonds made.<br>Answer: 612 kJ mol <sup>-1</sup> |
|   |   | Total              |                                                 |                                                              | 4 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 7 | а | IF entha<br>marks  |                                                 | /ER ON ANSWER LINE<br>19.5 (kJ mol <sup>-1</sup> ) award 3   | 3 | ANNOTATE ANSWER WITH TICKS AND<br>CROSSES ETC<br>IF there is an alternative answer, check to<br>see if there is any ECF credit possible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

|     | = (+)3919.5 (kJ mol <sup>-1</sup> ) award 2 marks                                                                                                                                                                                                                                                                                                                          |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | Working for CO <sub>2</sub> <b>AND</b> H <sub>2</sub> O seen anywhere (1 mark)<br>$6 \times (-)393.5$ <b>AND</b> $6 \times (-)285.8$<br><b>OR</b> (-)2361 <b>AND</b> (-)1714.8<br><b>OR</b> (-)4075.8 $\checkmark$<br><i>Calculates</i> $\Delta_c H$<br><b>A further 2 marks</b> for correct answer<br><b>AND</b> correct sign<br>= (6 × -393.5) + (6 × -285.8) - (-156.3) |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | = −3919.5 (kJ mol <sup>-1</sup> ) ✓ ✓                                                                                                                                                                                                                                                                                                                                      |   | ALLOW 3 marks for $\Delta_{\rm C}$ H = -3920<br>FINAL answer rounded to 3 SF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|     |                                                                                                                                                                                                                                                                                                                                                                            |   | Common incorrect answers are shown<br>below<br>ALLOW 2 marks for $\triangle_{C}H = -3924$<br>From $\triangle_{c}H = (6 \ \chi - 394 + 6 \ x - 286) - (-156)$<br>Data rounded to 3 sig figs<br>ALLOW 2 marks for $\triangle_{C}H = -4232.1$<br>All data added together<br>$(6 \ x - 393.5) + (6 \ x - 285.8) + (-156.3)$<br>ALLOW 1 mark for $\triangle_{C}H = (+)4232.1$<br>Examiner's Comment:<br>This calculation was generally well answered<br>but there were a variety of errors that could<br>lead to candidates scoring just one or two<br>marks. These included incorrect signs<br>associated with the data during the calculation,<br>adding all the data together or missing out the |
|     | FIRST, CHECK THE ANSWER ON ANSWER LINE<br>IF answer = –2510 (kJ mol <sup>-1</sup> ) award 4 marks<br>IF answer = 2508 / 2507 (kJ mol <sup>-1</sup> ) award 3 marks                                                                                                                                                                                                         |   | sign associated with the final answer. ANNOTATE ANSWER WITH TICKS AND CROSSES ETC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| b i | (not rounded to 3SF, ignore sign)<br><b>IF answer = + 2510 (kJ mol</b> <sup>-1</sup> ) award 3 marks<br>(incorrect sign)<br><b>IF answer = -2510000 (kJ mol</b> <sup>-1</sup> ) award 3 marks<br>(used J instead of kJ)                                                                                                                                                    | 4 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | <i>Moles</i><br>n(C <sub>6</sub> H <sub>14</sub> ) = 0.0150 mol ✓<br><i>Energy</i><br>q calculated correctly = 37620 (J) <b>OR</b> 37.620 (kJ)                                                                                                                                                                                                                             |   | malaa = 1.20/86.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     | <b>√</b>                                                                                                                                                                                                                                                                                                                                                                   |   | moles = 1.29/86.0<br>IGNORE trailing zeros                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |



|   |   |   | Catalyst lowers the activation energy (by providing an alternative route) √<br><b>QWC</b> - (With a catalyst a) greater proportion of molecules with energy greater than activation energy <b>OR</b><br>(With a catalyst a) greater proportion of molecules with energy equal to the activation energy <b>OR</b><br>(With a catalyst there is a) greater area under curve above the activation energy √ |   | DO NOT ALLOW two curves         DO NOT ALLOW a curve that bends up at the end by more than one small square         ALLOW particles instead of molecules on y axis         DO NOT ALLOW enthalpy for x-axis label         DO NOT ALLOW atoms instead of particles or molecules         ALLOW ECF for the subsequent use of atoms (instead of molecules or particles)         ALLOW annotations on Boltzmann distribution diagram         QWC requires more molecules have / exceed activation energy / <i>E</i> a.         IGNORE more molecules have enough energy to react for the QWC mark (as not linked to <i>E</i> a)         ORA if states the effect with no catalyst         IGNORE (more) successful collisions         Examiner's Comments         Candidates are very familiar with the Boltzmann distribution curve and there were many examples of excellent diagrams. The majority of candidates scored maximum marks in this part. Failure to identify that more molecules have an energy greater than the activaction energy when a catalyst is used, was a common reason why only three marks were scored. |
|---|---|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |   |   | Total                                                                                                                                                                                                                                                                                                                                                                                                   | 7 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 9 | а | i | IF $\Delta H_r = -347$ (kJ mol <sup>-1</sup> ) award 4 marks<br>IF $\Delta H_r = (+)347$ (kJ mol <sup>-1</sup> ) award 3 marks (incorrect<br>sign)<br><br>Moles<br>Amount, $n(CuSO_4)$ , calculated correctly = 0.0125 (mol)<br>$\checkmark$<br>Energy<br>$q$ calculated correctly = 4336.75 (J) OR 4.33675 (kJ) $\checkmark$                                                                           | 4 | ANNOTATE ANSWER WITH TICKS AND<br>CROSSES<br>Note: <i>q</i> = 25.0 × 4.18 × 41.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|   |   |   |                                                                                                                                                                                                                                                                                                                                                                                                         |   | ALLOW 3 SF up to calculator value of 4336.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

|   |    | <b>Calculating</b> $\Delta H$<br>correctly calculates $\Delta H$ in kJ mol <sup>-1</sup> to 3 or more sig figs<br>$\checkmark$<br><b>Rounding and Sign</b><br>calculated value of $\Delta H$ rounded to 3 sig. fig. with minus<br>sign $\checkmark$ |   | J<br>IGNORE sign<br>IGNORE working<br>Note: from 4336.75 J and 0.0125 mol $\Delta H = (-)$<br>346.940 kJ mol <sup>-1</sup><br>IGNORE sign at this intermediate stage<br>ALLOW ECF from <i>n</i> (CuSO <sub>4</sub> ) and / or energy<br>released<br>Final answer must have <b>correct sign</b> and<br><b>three sig figs</b><br>Answer is still -347 from rounding of <i>q</i> to 4340<br>J<br><b>Examiner's Comments</b><br>Almost all candidates recognised the first step<br>of this unstructured calculation was to use the<br><i>mc</i> $\Delta T$ expression to determine the energy<br>change. The majority of the cohort<br>subsequently divided this by the moles of<br>CuSO <sub>4</sub> to obtain a value for $\Delta H_r$ . A significant<br>proportion of responses did not include a sign<br>for the enthalpy change and so only scored<br>three marks. A small number of candidates<br>gave incomplete responses, often rounding the<br>energy change to three significant figures,<br>rather than processing it further.<br>Answer: -347 kJ mol <sup>-1</sup> |
|---|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | ii | Minimum mass = 0.0125 × 24.3 × 1.25 = 0.38(0) g √                                                                                                                                                                                                   | 3 | ALLOW ECF for mass correctly rounded to 2<br>dp from incorrect moles of CuSO <sub>4</sub> in <b>3(a)(i)</b><br>Examiner's Comments<br>The majority of candidates were able to link<br>the moles of CuSO <sub>4</sub> with the balanced<br>equation to determine the moles of Mg<br>reacting and hence suggest a mass. However,<br>only the strongest candidates were able to<br>scale the quantity required to take into account<br>the excess.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| b | i  | (enthalpy change that occurs) when one mole of a substance $\checkmark$                                                                                                                                                                             | 3 | ALLOW energy required OR energy released<br>ALLOW one mole of a compound OR one<br>mole of an element<br>ALLOW combusts in excess oxygen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

|   |    | completely combusts $\mathbf{OR}$ reacts fully with oxygen $\checkmark$                 |   | ALLOW burns in excess oxygen<br>Combusts in excess air is <b>not</b> sufficient                                                                                                                                                                                                                                                                                                |
|---|----|-----------------------------------------------------------------------------------------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |    | 298 K / 25 °C <b>AND</b> 1 atm / 100 kPa / 101 kPa / 10⁵ Pa<br>/ 1 bar √                |   | IGNORE reference to concentration                                                                                                                                                                                                                                                                                                                                              |
|   |    |                                                                                         |   | Examiner's Comments                                                                                                                                                                                                                                                                                                                                                            |
|   |    |                                                                                         |   | This definition is well known by candidates and<br>the majority scored all three marks. A<br>significant proportion of the cohort only scored<br>two as the standard conditions were often<br>omitted. Candidates should be encouraged to<br>read questions carefully to ensure they include<br>all the required information in their responses.                               |
|   |    |                                                                                         |   | ANNOTATE ANSWER WITH TICKS AND CROSSES                                                                                                                                                                                                                                                                                                                                         |
|   |    |                                                                                         |   | IF there is an alternative answer, check to see if there is any ECF credit possible                                                                                                                                                                                                                                                                                            |
|   |    | IF answer = $-281$ (kJ mol <sup>-1</sup> ), award 2 marks                               |   | Common incorrect answers are shown                                                                                                                                                                                                                                                                                                                                             |
|   |    | IF answer = (+)281 (kJ mol <sup>-1</sup> ), award 1 mark                                |   | below                                                                                                                                                                                                                                                                                                                                                                          |
|   |    |                                                                                         |   | Award 1 mark for                                                                                                                                                                                                                                                                                                                                                               |
|   |    | Working for C AND H <sub>2</sub> seen anywhere                                          |   | 5445 (not used × 9 and × 10)<br>2871 (not used × 9)                                                                                                                                                                                                                                                                                                                            |
|   |    |                                                                                         |   | 2293 (not used × 10)                                                                                                                                                                                                                                                                                                                                                           |
|   | ii | $9 \times (-)394$ <b>AND</b> $10 \times (-)286$                                         | 2 |                                                                                                                                                                                                                                                                                                                                                                                |
|   |    | OR (−)3546 AND (−)2860<br>OR (−)6406 √                                                  |   | Examiner's Comments                                                                                                                                                                                                                                                                                                                                                            |
|   |    | Calculates $\Delta H_c$ correctly<br>-64066125 = -281 kJ mol <sup>-1</sup> $\checkmark$ |   | In general candidates approached this calculation confidently and applied Hess' law accurately. Some candidates failed to take into account the mole ratios, but subsequently processed their values correctly. Consequently the majority of candidates scored one or two marks.                                                                                               |
|   |    |                                                                                         |   |                                                                                                                                                                                                                                                                                                                                                                                |
|   |    |                                                                                         |   | IGNORE energy required OR energy released DO NOT ALLOW bonds formed                                                                                                                                                                                                                                                                                                            |
|   |    |                                                                                         |   | IGNORE heterolytic / homolytic                                                                                                                                                                                                                                                                                                                                                 |
|   |    | (Average enthalpy change) when one mole of bonds                                        |   | Examiner's Comments                                                                                                                                                                                                                                                                                                                                                            |
| с | i  | √<br>of (gaseous covalent) bonds is broken √                                            | 2 | Most candidates were able to recall that bond<br>enthalpy referred to the energy change<br>occurring when bonds are broken, but weaker<br>responses included contradictions by also<br>mentioning bond formation. The strongest<br>candidates were able to state that bond<br>enthalpy referred to one mole of bonds but a<br>significant proportion of candidates incorrectly |

|        |   |    |                                                                                                                         |    | referred to one mole of molecules or made no reference to this quantity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------|---|----|-------------------------------------------------------------------------------------------------------------------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        |   |    |                                                                                                                         |    | ANNOTATE ANSWER WITH TICKS AND<br>CROSSES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|        |   |    |                                                                                                                         |    | IGNORE sign                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|        |   |    | IF answer = (+)1062 (kJ mol⁻¹), award 3 marks                                                                           |    | IGNORE sign                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|        |   |    | IF answer = $-1062$ (kJ mol <sup>-1</sup> ), award 2 marks                                                              |    | ALLOW ECF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|        |   |    | (Δ <i>H</i> for bonds broken =) 2580 (kJ mol <sup>−1</sup> )<br><b>OR</b> 1652 <b>AND</b> 928 (kJ mol <sup>−1</sup> ) √ |    | <b>IGNORE</b> rounding of 1062 to 1060 and credit 1062 from working                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|        |   | ii | ( $\Delta H$ for bonds formed =) 1308 (kJ mol <sup>-1</sup> ) √                                                         | 3  | Award 2 marks for<br>±1272 (from ±(2580 – 1308))<br>±1482 (from ±(2580 – 1308 + 210))                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        |   |    |                                                                                                                         |    | Examiner's Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|        |   |    | (bond enthalpy CO = 2580 - 1308 - 210) = (+)1062<br>(kJ mol <sup>-1</sup> ) √                                           |    | Almost all candidates were able to process the bond enthalpy data and mole ratios to arrive at values for the energy required to break bonds in the reactants and the energy released by the formation of H–H bonds in the products. The most able candidates processed these values alongside the enthalpy change provided in the question to arrive at the correct answer. Common incorrect responses included +1482 kJ mol <sup>-1</sup> and +1272 kJ mol <sup>-1</sup> , the latter of which was caused by failure to use the $\Delta$ H value provided. |
|        |   |    | Total                                                                                                                   | 15 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        |   |    | FIRST, CHECK THE ANSWER ON ANSWER LINE<br>IF $\Delta_r H = -58.5$ (kJ mol <sup>-1</sup> ) award 4 marks                 |    | FULL ANNOTATIONS MUST BE USED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |   |    | Energy released in J OR kJ                                                                                              |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1<br>0 | а |    | = 100.0 × 4.18 × 10.5 = 4389 (J) <b>OR</b> 4.389 (kJ) √                                                                 | 4  | ALLOW 4390 J; 4.39 kJ<br>DO NOT ALLOW less than 3 SF<br>IGNORE units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|        |   |    | Correctly calculates n(Pb(NO <sub>3</sub> ) <sub>2</sub> )                                                              |    | <i>i.e.</i> ALLOW correctly calculated number in J<br>OR kJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

|   | $= 1.50 \times \frac{50}{1000} = 0.075(0) \text{ (mol) } \checkmark$                                                                                                                                                     |   |                                                                                                                                                                                                                                                                                                                                                                                                    |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | <b>∆H</b> value in J OR kJ<br>Answer MUST divide energy by $n(Pb(NO_3)_2)$<br>$(-)\frac{4389}{0.0750}$ OR $(-)58520$ (J)<br>OR<br>$(-)\frac{4.389}{0.0750}$ OR $(-)58.52$ (kJ) ✓ (Sign<br>ignored and/or more than 3 SF) |   | ALLOW ECF from <i>n</i> (Pb(NO <sub>3</sub> ) <sub>2</sub> ) AND/OR<br>Energy<br>ALLOW 58500 (from 4390)<br>IGNORE absence of – sign and 3 SF<br>requirement                                                                                                                                                                                                                                       |
|   | Correct Δ <sub>r</sub> <i>H</i> in kJ <b>AND</b> – sign AND 3 SF<br>= –58.5 (kJ mol <sup>-1</sup> ) √                                                                                                                    |   | Final mark requires – sign, kJ <b>AND</b> 3 SF<br><b>Note</b> : From 4390 J, $\Delta_r H = -58.5$ (kJ mol <sup>-1</sup> )<br>(SAME)<br><br><b>Common error</b>                                                                                                                                                                                                                                     |
|   |                                                                                                                                                                                                                          |   | -29.3 3 marks (50 g instead of 100 g in $mc\Delta T$ )<br><b>Examiner's Comments</b><br>Although similar in style to unstructured direct<br>enthalpy calculations on the legacy                                                                                                                                                                                                                    |
|   |                                                                                                                                                                                                                          |   | specification, this question was harder for two<br>reasons. Firstly, two volumes of 50 cm <sup>3</sup> had to<br>be added together to generate m as 100 g for<br>$mc\Delta T$ . Secondly, candidates were asked to<br>quote their final answer to an 'appropriate'<br>number of significant figures. This will be the<br>least accurate measurement (to 3 significant<br>figures in this example). |
|   |                                                                                                                                                                                                                          |   | Many incorrect answers used <i>m</i> as 50 g or quoted a final numerical value to more than 3 significant figures.                                                                                                                                                                                                                                                                                 |
|   |                                                                                                                                                                                                                          |   | Even after obtaining a correct final value for $\Delta H$ , this was often not given a negative sign to indicate the exothermic change.                                                                                                                                                                                                                                                            |
|   |                                                                                                                                                                                                                          |   | It is important for candidates to show clear<br>working so that markers can see what is<br>intended and able to apply credit using error<br>carried forward.                                                                                                                                                                                                                                       |
|   |                                                                                                                                                                                                                          |   | Answer: $\Delta H = -58.5 \text{ kJ mol}^{-1}$                                                                                                                                                                                                                                                                                                                                                     |
| Ь | Pb <sup>2+</sup> (aq) + 2l⁻(aq) → Pbl²(s) √<br>State symbols required                                                                                                                                                    | 1 | ALLOW Pb <sup>+2</sup> (aq)                                                                                                                                                                                                                                                                                                                                                                        |
|   |                                                                                                                                                                                                                          |   | IGNORE spectator ions, K⁺(aq) and 2NO <sub>3</sub> ⁻(aq) on both sides                                                                                                                                                                                                                                                                                                                             |

|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | Examiner's Comments<br>Only the best candidates were able to<br>construct the required equation. Even when<br>written correctly, state symbols (asked for in<br>the question) were often omitted or shown<br>incorrectly. Although very similar to the ionic<br>equation for formation of silver halides, this<br>equation was beyond most candidates at this<br>stage of their chemistry studies.                                                                                                                                                 |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| с   | FIRST, CHECK ANSWER ON ANSWER LINE<br>IF [KI(aq)] rounds to 3.3 mol dm <sup>-3</sup><br>e.g. 3.30, 3.33, 3.3 recurring<br><br>Method 1<br>[KI(aq)] for complete reaction<br>$= 2 \times 0.0750 = 0.150 \text{ mol } \times \frac{1000}{50} = 3 \text{ (mol dm}^{-3}) \checkmark$<br>10% greater gives $3 \times 1.1 = 3.3(0) \checkmark$<br>OR<br>Method 2<br>$n(KI(aq)) \text{ required} = 2.2 \times 0.0750 = 0.165 \text{ mol } \checkmark$ | 2 | ALLOW ECF from incorrect $n(Pb(NO_3)_2)$ from24(a)BUT if (a) is incorrect but 0.0750 used here,<br>treat as a fresh start and IGNORE response<br>from 24(a)ALLOW 2 marks for 3.3/3.3 recurring<br>Attempt at increasing concentration by 10% $= 2 \times 0.0750 = 0.150 \text{ mol} \times \frac{1000}{45} = 3.33 \text{ (mol dm}^{-3})$ ALLOW ECF from incorrect $n(KI)$ Common errors31 mark (Correct for KI with no extra<br>10%)1.651 mark (no factor of 2 used for KI)<br>2.72.73/2.721 mark (10% increase in volume: 55<br>cm <sup>3</sup> ) |
|     | [Kl(aq)] = 0.165 × $\frac{1000}{50}$ = 3.3(0) (mol dm <sup>-3</sup> ) ✓                                                                                                                                                                                                                                                                                                                                                                        |   | Examiner's Comments<br>This part was well attempted with many<br>candidates able to score at least one of the<br>two marks. Errors related to use of an incorrect<br>mole ratio, applying 10% incorrectly, or<br>ignoring 10% altogether.<br>Answer: 3.30 mol dm <sup>-3</sup>                                                                                                                                                                                                                                                                     |
|     | Total                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1 i | More energy is required for bond breaking than is released by bond making $\checkmark$                                                                                                                                                                                                                                                                                                                                                         | 1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

|   |    |                                                                                                                                     |   | Examiner's Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---|----|-------------------------------------------------------------------------------------------------------------------------------------|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |    |                                                                                                                                     |   | The poor quality of answers observed<br>surprised the Examiners as this question had<br>featured a number of times on legacy papers<br>which would have been used in Centres to<br>prepare candidates for this examination. Many<br>candidates were not able to explain that bond<br>breaking requires energy whereas bond<br>making produces energy. For the reaction to<br>be endothermic more energy is required to<br>break bonds than is evolved when bonds are<br>formed. In their answers candidates frequently<br>stated that both processes required energy or<br>that more bonds were broken than were<br>formed. |
|   |    |                                                                                                                                     |   | enthalpy $N_2(g) + \frac{N_2O(g)}{\Delta H}$<br>progress of reaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   |    | Enthalpy profile diagram                                                                                                            |   | IGNORE activation energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   |    | <ul> <li>Δ<i>H</i> labelled <b>OR</b> 82 on vertical arrow</li> <li>Draduate above reactante (either above reactante)</li> </ul>    |   | <b>DO NOT ALLOW</b> multiples of equation:<br>1 mole of N <sub>2</sub> O is formed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|   | ii | <ul> <li>Products above reactants (either chemical symbols or the words products and reactants)</li> <li>Arrow upwards √</li> </ul> | 2 | Examiner's Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|   |    | Formulae <b>AND</b> state symbols $N_2(g) + \frac{1}{2}O_2(g) \rightarrow N_2O(g) \checkmark$                                       |   | Half of the candidates scored zero for this question, many failing to label the enthalpy change or to show this as an arrow pointing upwards. Although the question stated that the activation energy was not required, candidates frequently included it in their diagrams and then labelled it $\Delta$ H. Many Candidates did not write the formula of the reactants or products and those who did multiplied the species by two so as the diagram did not represent the enthalpy of formation.                                                                                                                          |
|   |    | Total                                                                                                                               | 3 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|   |    |                                                                                                                                     |   | IGNORE energy required OR energy released<br>DO NOT ALLOW bonds formed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1 |    | (Average enthalpy change) when one mole of bonds $\checkmark$                                                                       | 0 | Examiner's Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2 | i  | of (gaseous covalent) bonds is broken ✓                                                                                             | 2 | Candidates were required to recall the<br>definition of bond enthalpy in this question and<br>a range of responses were seen. Most<br>candidates recognised that bond breaking was<br>important, but weaker responses included                                                                                                                                                                                                                                                                                                                                                                                              |

|        |   |    |                                                                                                                                                                                                                                                                                       |   | contradictions by also referring to bond<br>formation. The strongest candidates were able<br>to state that bond enthalpy referred to one<br>mole of bonds but it was not uncommon to see<br>answers such as 'one mole of compound' and<br>'one mole of substance'.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------|---|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        |   |    |                                                                                                                                                                                                                                                                                       |   | IF there is an alternative answer, check to<br>see if there is any ECF credit possible.<br>two common incorrect answers are:<br>-970 (kJ mol <sup>-1</sup> ) award 2 marks<br>+970 (kJ mol <sup>-1</sup> ) award 1 mark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|        |   |    | FIRST, CHECK THE ANSWER ON ANSWER LINE<br>IF enthalpy change = −42 (kJ mol <sup>-1</sup> ) award 3 marks                                                                                                                                                                              |   | IGNORE signs<br>ALLOW 1076 (bonds broken); 1118 (bonds<br>made)<br>Correct sign required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|        |   | ii | IF enthalpy change = +42 (kJ mol <sup>−1</sup> ) award 2 marks                                                                                                                                                                                                                        | 3 | ALLOW ECF for bonds broken – bonds made<br>IF at least one molar ratio is used e.g. 8 × C–H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|        |   |    | (Energy for bonds broken) = 5538 (kJ) $\checkmark$<br>(Energy for bonds made) = 5580 (kJ) $\checkmark$<br>$\Delta H_r = -42$ (kJ mol <sup>-1</sup> ) $\checkmark$                                                                                                                     |   | Examiner's Comments<br>Candidates approached this question well and<br>the majority of responses were clearly and<br>logically presented. The strongest candidates<br>were able to identify all the bonds broken and<br>formed and calculate the correct enthalpy<br>change. Some candidates carried out the final<br>step incorrectly, arriving at a value of +42 kJ<br>mol <sup>-1</sup> . A common mistake was to omit the<br>bonds broken in water, giving an enthalpy<br>change of –970 kJ mol <sup>-1</sup> . Other mistakes were<br>seen and error carried forward marks were<br>awarded where appropriate. Candidates are<br>advised to draw displayed formulae to help<br>identify the number of each type of bond to be<br>used in their calculation.<br>Answer: –42 kJ mol <sup>-1</sup> |
|        |   |    | Total                                                                                                                                                                                                                                                                                 | 5 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1<br>3 | а | i  | FIRST, CHECK THE ANSWER ON ANSWER LINE<br>IF $\Delta H_c = -2260$ (kJ mol <sup>-1</sup> ) award 4 marks<br>IF $\Delta H_c = (+)2260$ (kJ mol <sup>-1</sup> ) award 3 marks<br>(incorrect sign)<br>IF $\Delta H_c = (\pm)2257(.2)$ (kJ mol <sup>-1</sup> ) award 3 marks (not 3<br>sf) | 4 | ANNOTATE ANSWER WITH TICKS AND<br>CROSSES ETC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

|   |    | Moles                                                                                     |   |                                                                                                |
|---|----|-------------------------------------------------------------------------------------------|---|------------------------------------------------------------------------------------------------|
|   |    | Amount, <i>n</i> , C <sub>5</sub> H <sub>12</sub> O calculated correctly = $0.0175$ (mol) |   |                                                                                                |
|   |    | $\checkmark$                                                                              |   |                                                                                                |
|   |    | Energy                                                                                    |   |                                                                                                |
|   |    | $q$ calculated correctly = 39501 (J) <b>OR</b> 39.5(01) (kJ) $\checkmark$                 |   |                                                                                                |
|   |    |                                                                                           |   | <b>Note</b> : <i>q</i> = 180 × 4.18 × 52.5                                                     |
|   |    |                                                                                           |   | ALLOW 39501 OR correctly rounded to 3 sig.                                                     |
|   |    |                                                                                           |   | fig. (J)                                                                                       |
|   |    |                                                                                           |   | IGNORE sign                                                                                    |
|   |    | Calculating ∆H                                                                            |   | IGNORE working                                                                                 |
|   |    | correctly calculates $\Delta H$ in kJ mol <sup>-1</sup> to 3 or more sig figs             |   |                                                                                                |
|   |    | $\checkmark$                                                                              |   |                                                                                                |
|   |    |                                                                                           |   | <b>Note</b> : from 39501 J and 0.0175 mol ΔH =                                                 |
|   |    |                                                                                           |   | (−)2257.2 kJ mol <sup>-1</sup>                                                                 |
|   |    |                                                                                           |   |                                                                                                |
|   |    |                                                                                           |   | <b>IGNORE</b> sign at this intermediate stage                                                  |
|   |    |                                                                                           |   | ALLOW ECF from incorrect q and / or                                                            |
|   |    | Rounding and Sign                                                                         |   | incorrect n                                                                                    |
|   |    | calculated value of $\Delta H$ rounded to 3 sig. fig. with minus                          |   |                                                                                                |
|   |    | sign√                                                                                     |   |                                                                                                |
|   |    |                                                                                           |   | Final answer must have <b>correct sign</b> and                                                 |
|   |    |                                                                                           |   | three sig figs                                                                                 |
|   |    |                                                                                           |   | Examiner's Comments                                                                            |
|   |    |                                                                                           |   |                                                                                                |
|   |    |                                                                                           |   | Candidates coped well with this unstructured                                                   |
|   |    |                                                                                           |   | calculation. Almost all candidates recognised                                                  |
|   |    |                                                                                           |   | the first step was to use the $mc\Delta T$ expression                                          |
|   |    |                                                                                           |   | to determine the energy change and                                                             |
|   |    |                                                                                           |   | subsequently divided this by the moles of                                                      |
|   |    |                                                                                           |   | alcohol <b>J</b> to obtain a value for $\Delta H_c$ . A                                        |
|   |    |                                                                                           |   | significant proportion of responses across the                                                 |
|   |    |                                                                                           |   | whole ability range did not include a sign for                                                 |
|   |    |                                                                                           |   | the enthalpy change or did not round the final answer to three significant figures and so only |
|   |    |                                                                                           |   | scored three marks. Candidates should be                                                       |
|   |    |                                                                                           |   | aware that when a question includes a                                                          |
|   |    |                                                                                           |   | requirement to round the final answer to a                                                     |
|   |    |                                                                                           |   | stated number of significant figures, failure to                                               |
|   |    |                                                                                           |   | do so will prevent full marks from being                                                       |
|   |    |                                                                                           |   | awarded.                                                                                       |
|   |    |                                                                                           |   |                                                                                                |
|   |    |                                                                                           |   | Answer: -2260 kJ mol <sup>-1</sup>                                                             |
|   |    | ANY TWO FROM THE FOLLOWING $\checkmark\checkmark$                                         |   |                                                                                                |
|   |    |                                                                                           |   | IGNORE heat loss (in question)                                                                 |
|   |    |                                                                                           |   | ALLOW burns incompletely                                                                       |
|   |    | incomplete combustion                                                                     |   | IGNORE incomplete reaction                                                                     |
|   | ii |                                                                                           | 2 |                                                                                                |
|   |    | non-standard conditions                                                                   | - | Examiner's Comments                                                                            |
|   |    | eveneration of clock of two to a                                                          |   |                                                                                                |
|   |    | evaporation of alcohol / water                                                            |   | This question proved hard for candidates and                                                   |
|   |    | specific heat capacity of heaker / apportug                                               |   | although one of incomplete combustion or                                                       |
|   |    | specific heat capacity of beaker / apparatus                                              |   | reference to non-standard conditions was                                                       |
| · |    |                                                                                           |   |                                                                                                |

|     |                                                                                                                                                                                              |    | frequently mentioned, such responses were<br>often accompanied by vaguer statements.<br>These statements included reference to data<br>books containing average values, or mention<br>of human or equipment error, e.g. the mass of<br>alcohol was measured incorrectly.<br>Consequently many candidates scored one,<br>with only the best candidates securing both<br>marks.                                                                                                                                                                                                                                                         |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| b i | $5C(s) + 6H_2(g) + \frac{1}{2}O_2(g) \rightarrow C_5H_{12}O(I) \checkmark$                                                                                                                   | 1  | Balancing numbers AND species AND states<br>all required<br>DO NOT ALLOW multiples of this equation<br>Examiner's Comments<br>Many candidates were able to provide a<br>correctly balanced equation for the enthalpy of<br>formation of alcohol J. However, it was often<br>the case that no state symbol was provided for<br>J. A significant proportion of candidates<br>suggested an incorrect state symbol for J, <i>viz.</i><br>(aq). While others gave no state symbols at<br>all. Candidates should be encouraged to<br>check questions carefully when asked to give<br>an equation to avoid omitting required<br>information. |
| ii  | FIRST, CHECK THE ANSWER ON ANSWER LINE<br>IF enthalpy change = $-3320$ (kJ mol <sup>-1</sup> ) award 3<br>marks<br>IF enthalpy change = (+)3320 (kJ mol <sup>-1</sup> ) award 2<br>marks<br> | 3  | ANNOTATE ANSWER WITH TICKS AND<br>CROSSES ETC<br>IF there is an alternative answer, check to<br>see if there is any ECF credit possible<br>Common incorrect answers are shown<br>below<br>Award 2 marks for<br>-1744 OR -1890 OR -314 OR -4052<br>Award 1 mark for<br>1744 OR 1890 OR 314 OR 4052<br>Examiner's Comments<br>Candidates appeared well prepared for this<br>type of calculation and the majority scored full<br>marks. A significant proportion failed to give<br>the correct sign, and received two marks.<br>Answer: -3320 kJ mol <sup>-1</sup>                                                                       |
|     | Total                                                                                                                                                                                        | 10 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

|   |   |                                                                                                                                                                                                                                                       |   | ANNOTATE ANSWER WITH TICKS AND<br>CROSSES ETC                                                                                                                                                                                                                                                                            |
|---|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |   |                                                                                                                                                                                                                                                       |   | Note: q = 50.0 × 4.18 × 5.5<br>ALLOW 1149.5 OR correctly rounded to 3 sig<br>figs (J)<br>IGNORE sign<br>IGNORE working<br>ALLOW 53.18 × 4.18 × 5.5 OR 1222.6082 OR<br>1220 OR correctly rounded to 3 or more sig<br>figs in J or kJ                                                                                      |
|   |   | FIRST, CHECK THE ANSWER ON ANSWER LINE<br>IF answer = −38.3 (kJ mol <sup>-1</sup> ) award 4 marks<br>IF answer = (+)38.3 (kJ mol <sup>-1</sup> ) award 3 marks<br>(incorrect sign)<br>IF answer = -38,300 (kJ mol <sup>-1</sup> ) award 3 marks (used |   | IGNORE working<br>IGNORE trailing zeros                                                                                                                                                                                                                                                                                  |
|   |   | J instead of kJ).<br>Energy<br>$q$ calculated correctly = 1149.5(J) $\checkmark$ OR 1.1495 (kJ) $\checkmark$                                                                                                                                          |   | <b>IGNORE</b> sign at this intermediate stage<br><b>ALLOW</b> ECF from incorrect q and / or<br>incorrect n                                                                                                                                                                                                               |
| 1 | а | Moles                                                                                                                                                                                                                                                 | 4 | Final answer must have <b>correct sign</b> and <b>three sig figs</b>                                                                                                                                                                                                                                                     |
|   |   | Amount, <i>n</i> , of Na <sub>2</sub> CO <sub>3</sub> calculated correctly= 0.03(00) $\checkmark$                                                                                                                                                     |   | ALLOW −40.8 kJ mol <sup>-1</sup> if 53.18 used in<br>calculation of q<br>ALLOW −40.7 kJ mol <sup>-1</sup> if q is rounded to 1220                                                                                                                                                                                        |
|   |   | <b>Calculating</b> $\Delta H$<br>correctly calculates $\Delta H$ in kJ mol <sup>-1</sup> to 3 or more sig<br>figs $\checkmark$                                                                                                                        |   | from 53.18 earlier Examiner's Comments                                                                                                                                                                                                                                                                                   |
|   |   | Rounding and Sign calculated value of <i>∆H</i> rounded to 3 sig. fig. with minus sign ✓                                                                                                                                                              |   | Candidates coped well with this unstructured calculation. Almost all candidates recognised the first step was to use the $mc\Delta T$ expression to determine the energy change and subsequently divided this by the moles of Na <sub>2</sub> CO <sub>3</sub> to obtain a value for $\Delta H_r$ .                       |
|   |   |                                                                                                                                                                                                                                                       |   | A significant proportion of responses across<br>the whole ability range did not include a sign<br>for the enthalpy change. Candidates should be<br>encouraged to quote all enthalpy changes with<br>the appropriate sign, so that they receive the<br>credit they deserve.                                               |
|   |   |                                                                                                                                                                                                                                                       |   | Common incorrect responses included using<br>the mass of the carbonate rather than the<br>volume of acid as m in the $mc\Delta T$ expression.<br>Some candidates used the moles of HC/ rather<br>than Na <sub>2</sub> CO <sub>3</sub> when calculating $\Delta H_r$ . Error<br>carried forward marks were awarded, where |

|   |    |                                                                                                                                                                                  |   | appropriate, in each of these cases.<br>Consequently the majority of candidates<br>scored in this part. The most common marks<br>were 3 and 4, which were awarded in roughly<br>equal proportions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| b | i  | (Enthalpy change) when one mole of a compound ✓<br>is formed from its elements ✓<br>298 K / 25 °C <b>AND</b> 1 atm / 100 kPa / 101 kPa / 1 bar<br>✓                              | 3 | ALLOW energy required OR energy released<br>ALLOW one mole of substance OR one mole<br>of product<br>DO NOT ALLOW one mole of element<br>IGNORE reference to concentration<br>Examiner's Comments<br>Candidate were well prepared to quote this<br>definition and many candidates scored full<br>marks. Some candidates neglected to give the<br>standard conditions or quoted incorrect values.                                                                                                                                                                                                                                                                                                                                                                         |
|   | ii | $\frac{1}{2}N_2(g) + 2H_2(g) + \frac{1}{2}Cl_2(g) + 2O_2(g) \rightarrow NH_4C/O_4(s)$<br>correct species $\checkmark$<br>correct state symbols <b>and</b> balancing $\checkmark$ | 2 | Second mark can only be awarded if all<br>species in the equation are correct<br>DO NOT ALLOW multiples of this equation<br>Examiner's Comments<br>This question required candidates to apply the<br>knowledge of the definition given in the<br>previous part and provide an equation for the<br>formation of ammonium chlorate(VII). Stronger<br>candidates were able to do this, but some<br>balanced the equation incorrectly and formed<br>two moles of the compound. It was common to<br>see incorrect formulae and weaker candidates<br>were unable to state the formula of chlorine,<br>which was given as <i>CI</i> . Nitrogen was also<br>show as N. Candidates should be aware that<br>being able to state formulae of elements is<br>required at this level. |
|   | II | FIRST, CHECK THE ANSWER ON ANSWER LINE<br>IF answer = (+)90 award 3 marks<br>IF answer = -90 award 2 marks<br>IF answer = ±270 award 2 marks<br>IF answer = ±2947 award 1 mark   | 3 | ANNOTATE ANSWER WITH TICKS AND<br>CROSSES ETC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   |    | Processing ΔH <sub>f</sub> values<br>±(3832 − 885) ±2947√                                                                                                                        |   | <b>Note</b> : ±2947 = ± [−1676 + (−704) + (6 x −242)]<br>− (3 x −295)]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

## 3.2.1 Enthalpy Changes

|        |        | OR                                                                                        |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------|--------|-------------------------------------------------------------------------------------------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        |        | ± (3832 - 885)                                                                            |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        |        | subtraction using $\Delta H$ reaction                                                     |    | ALLOW ECF for dividing by 3 from working that includes at least one $\Delta H_f$ and one                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|        |        | ±(2947–2677)= ±270 ✓                                                                      |    | balancing number and $\Delta H$ (–2677) for 1 mark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        |        | Calculation of $\Delta H$ formation NO                                                    |    | Examiner's Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|        |        | 270/3 = (+)90 ✓                                                                           |    | The majority of candidates made a good<br>attempt at this question and provided<br>structured responses. The most common<br>approach adopted by candidates was to use<br>the $\Delta$ Hf data given in the table and the<br>stoichiometry ratios from the equation to<br>calculate the difference between the reactants<br>and products, -2497 kJ mol <sup>-1</sup> . This value was<br>then subtracted from the enthalpy change of<br>the reaction to give +270 kJ mol <sup>-1</sup> . The<br>strongest candidates recognised the need to<br>divide this by three to obtain the enthalpy<br>change of formation of NO.<br>Some candidates carried out their subtractions<br>in the intermediate stages incorrectly and<br>consequently arrived at a value of -90 kJ<br>mol <sup>-1</sup> . This response received two marks.<br>Error carried forward credit was awarded to<br>candidates who incorrectly processed $\Delta H_f$<br>data, stoichiometric ratios and the enthalpy<br>change of the reaction provided their final<br>answer was divided by three. Consequently<br>the majority of candidates scored at least one<br>mark in this question. |
|        |        | Total                                                                                     | 12 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        |        |                                                                                           |    | This is the <b>ONLY</b> acceptable answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1<br>5 | а      | (+)182 ✓                                                                                  | 1  | <b>Examiner's Comments</b><br>Most candidates were able to correctly<br>process the $E_a$ and $\Delta H$ values provided to<br>calculate the activation energy of the reverse<br>reaction. Some candidates subtracted $\Delta H$<br>from the $E_a$ value to give an answer of 164 kJ<br>mol <sup>-1</sup> . Other candidates reversed the sign of<br>the activation energy provided to give —173<br>kJ mol <sup>-1</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | ۲<br>۲ | Look at answer if +63 kJ AWARD 2 markslf 63 (no sign) OR-63 (incorrect sign) AWARD 1 mark | 2  | ALLOW one mark for +126 kJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | b      | No of moles of HI = 14 moles $\checkmark$                                                 | 2  | Sign and value required.<br>ALLOW ECF from incorrect number of moles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

|   | Enthalpy Change = +63 kJ ✓                                                                                                                                                                                                                                                                                 |   | of HI<br><b>Examiner's Comments</b><br>Many candidates were able to tackle the first<br>part of this question confidently to obtain the<br>correct value for the moles of hydrogen iodide<br>that decomposed. The second marking point<br>proved more difficult, and candidates were<br>expected to scale the enthalpy change given,<br>in addition to providing the correct sign for this<br>process, which is the reverse reaction of the<br>equilibrium shown. The very best candidates<br>were able to achieve the second mark.<br>Common errors included incorrect scaling, to<br>give the enthalpy change as +126 kJ mol <sup>-1</sup> , or<br>showing the incorrect sign, -63 kJ mol <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                       |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| с | Look at answer if (+)298 AWARD 2 marks<br>If answer is -298 AWARD 1 mark (incorrect sign)<br>2 x H-l bond enthalpy correctly calculated<br>(436 +151-(-9) =) (+)596 $\checkmark$<br>H-l bond enthalpy correctly calculated<br>(Bond energy for H-l (+)596 =) (+)298 kJ mol <sup>-1</sup><br>2 $\checkmark$ | 2 | <b>ALLOW</b> 1 mark for (+)293.5 kJ mol <sup>-1</sup> (bonds<br>broken divided by 2)<br><b>ALLOW</b> 1 mark for (+)289 kJ mol <sup>-1</sup> (incorrect<br>[436 +151+(-9)])<br>expression i.e. 2<br><b>Examiner's Comments</b><br>This question required candidates to process<br>the bond enthalpy data and value for Δ <i>H</i> to<br>obtain a value of the bond enthalpy of H—1. In<br>general the responses were much better than<br>for a similar question asked in the January<br>2012 session and most candidates were able<br>to score at least one mark. The most common<br>error was a failure to divide by two, resulting in<br>an answer of +596 kJ mol <sup>-1</sup> . Another common<br>incorrect response included the incorrect<br>subtraction of Δ <i>H</i> from the bond enthalpy to<br>give a value of +289 kJ mol <sup>-1</sup> . Some<br>candidates neglected to use Δ <i>H</i> and arrived at<br>a value of +293.5 kJ mol <sup>-1</sup> . All these<br>responses received one mark.<br>This question discriminated well and the most<br>able candidates scored both marks. |
| d | There are 3 marking points required for 2 marks                                                                                                                                                                                                                                                            | 2 | ANNOTATE ANSWER WITH TICKS AND<br>CROSSES ETC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

## 3.2.1 Enthalpy Changes

|        |     | H <sub>2</sub> (g) + I <sub>2</sub> (g)<br>AH<br>BH<br>AH<br>2HI(g)<br>H <sub>2</sub> and I <sub>2</sub> on LHS<br>AND 2HI on RHS<br>AND correctly labelled Ea $\checkmark$<br>$\Delta H$ labelled with product below reactant<br>AND arrow downwards $\checkmark$                                                                                                                           |   | IGNORE state symbols. $E_a$ :ALLOW (+)173 only as an alternative<br>label for EaALLOW no arrowhead or arrowheads<br>at both ends of activation energy line<br>The $E_a$ line must point to maximum (or<br>near to the maximum) on the curve OR<br>span approximately 80% of the<br>distance between reactants and<br>maximum regardless of position<br>ALLOW AE or AE for $E_a$ AH:IF there is no $\Delta H$ labelled ALLOW -9<br>as an alternative label for $\Delta H$ .<br>IF $\Delta H$ is labelled IGNORE any<br>numerical value.DO NOT ALLOW - $\Delta H$ .<br>ALLOW this arrow even if it has a<br>small gap at the top and bottom i.e.<br>does not quite reach reactant or<br>product lineExaminer's CommentsMany candidates are well-rehearsed for this<br>type of question, however there are still some<br>issues regarding the use of double headed<br>arrows to indicate an enthalpy change. Whilst<br>allowed by the examiners for showing $E_a$ , a<br>correct single headed arrow was required to<br>illustrate $\Delta H$ . |
|--------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        |     | Total                                                                                                                                                                                                                                                                                                                                                                                        | 7 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1<br>6 | i   | $H_2SO_4 + 2NaOH \rightarrow Na_2SO_4 + 2H_2O (1)$                                                                                                                                                                                                                                                                                                                                           | 1 | allow multiples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        | ii  | Energy (into water) mark<br>$70.0 \times 4.18 \times 16.5 = 4827.9 \text{ (J) or } 4.8279 \text{ (kJ) (1)}$<br>amount of substance mark<br>$n(H_2O) = \frac{35.0}{1000} \times 2.40 = 0.084(0) \text{ (mol)}$<br>$\Delta_{\text{neut}}H \text{ mark}$<br>(-)4.8279 / 0.084(0) =<br>(-)57.475 <b>OR</b> (-)57.48 <b>OR</b> (-)57.5 (1)<br>Correctly rounded to at least 3 significant figures | 3 | allow rounding to 4828 OR 4830<br>allow amount of substance mark to be based<br>upon either HC/ or NaOH<br><u>Energy (into water) mark</u><br>allow ecf for Amount of substance mark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|        | iii | 1 mole of water had been formed (1)                                                                                                                                                                                                                                                                                                                                                          | 1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        |     |                                                                                                                                                                                                                                                                                                                                                                                              |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

## 3.2.1 Enthalpy Changes

|        |   | Total                                                                                                                                                                                                                                                                                       | 6 |                                                                                     |
|--------|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-------------------------------------------------------------------------------------|
| 1<br>7 | а | One mole of butane completely combusts in oxygen                                                                                                                                                                                                                                            | 1 | allow One mole forms CO <sub>2</sub> and H <sub>2</sub> O only                      |
|        | b | FIRST CHECK THE ANSWER ON THE ANSWER<br>LINE<br>IF answer = +215 (kJ mol <sup>-1</sup> ) award 2 marks<br>IF answer = -215 (kJ mol <sup>-1</sup> ) award 1 mark<br>RHS (-2877 + (2 x -2058) = (-)6993 (kJ mol <sup>-1</sup> ) (1)<br>$(\Delta_r H =) -6778 + (+6993) = +215 (kJ mol-1) (1)$ | 2 | <b>ignore</b> incorrect sign at this stage<br><b>sign required</b> for final answer |
|        |   | Total                                                                                                                                                                                                                                                                                       | 3 |                                                                                     |