3.2.1 Enthalpy Changes

Mark scheme - Enthalpy

3.2.1 Enthalpy Changes

3.2.1 Enthalpy Changes

3.2.1 Enthalpy Changes

				candidates did not give a correct equation, with missing or incorrect state symbols being common. This question discriminated extremely well.
		Total	6	
3	a	FIRST CHECK ON ANSWER LINE If answer $=(+) 431.5\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ award 2 marks If answer $=\mathbf{- 4 3 1 . 5}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right.$) award 1 mark (wrong sign) $2 \times \mathrm{H}-\mathrm{C} /$ bond enthalpy correctly calculated $=+436+243+184=+863\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \checkmark$ H-C/ bond enthalpy correctly calculated $+863 / 2=(+) 431.5\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \checkmark$	2	ALLOW to 3 SF i.e. 432 ALLOW 1 mark for (+)247.5 / 248 (wrong expression) i.e. (436+243-184)/2 Examiner's Comments Most candidates made a good attempt at this question. The most common mistake was to use the wrong sign when incorporating the enthalpy change into the calculation, or not to incorporate it at all.
	b i	$\mathrm{Br}_{2}(\mathrm{I}) \rightarrow \mathrm{Br}_{2}(\mathrm{~g}) \checkmark$	1	Examiner's Comments A good attempt by many candidates but some lost marks by having the wrong state of bromine, even though the question stated it was a liquid changing to a gas. Many added water or oxygen, some confused the equation with bond enthalpy and answers such as $\mathrm{Br}_{2_{(1)}}$ $\rightarrow 2 \mathrm{Br}_{(\mathrm{g})}$ were commonly seen.
		Endothermic AND Energy required to overcome induced dipole-dipole forces/London forces \checkmark	1	Mark independently of 3 (d) (i) ALLOW endo to break intermolecular forces/bonds ALLOW bonds between molecules DO NOT ALLOW van der Waals' forces Examiner's Comments The majority of candidates answered this question incorrectly. Only 10\% of candidates mentioned intermolecular/London forces. Most stated 'exothermic' or described breaking covalent bonds.
		Total	4	

3.2.1 Enthalpy Changes

3.2.1 Enthalpy Changes

		$=6.79 \times 10^{7}(\mathrm{~kJ}) \checkmark$ standard form AND 3 SF required		$\begin{array}{ll} 1.09 \times 10^{9}(\times 4 \text { instead of } \div 4) & 3 \text { marks } \\ 2.72 \times 10^{8}(\text { no } \div 4) & 3 \text { marks } \\ 6.79 \times 10^{1}(\text { no tonnes } \rightarrow \mathrm{g}) & 3 \text { marks } \end{array}$ Examiner's Comments Most candidates were able to convert from tonnes to moles and then went on to complete the majority of the calculation steps. Many omitted to divide by 4 and were credited 3 marks. Some candidates lost marks by not stating the answer to standard form or quoted their answer to more than 3 significant figures. A number of candidates attempted to use $\mathrm{Q}=$ $\mathrm{mc} \Delta \mathrm{T}$ and did not get very far in the calculation.
		Total	6	
5	i	(because energy is needed to break) induced dipoledipole interactions / London forces between molecules (1)	1	allow forces of attraction between molecules OR van der Waals' forces ignore reference to strong or weak
	ii	Bond breaking $(+193)+(+151)=(+) 344$ AND Bond making 2(-175) $=(-) 350(1)$ $\Delta_{t} H=\frac{(+344)+(-350)}{2}=-3\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)(1)$	2	Correct answer scores 2 marks
		Total	3	
6	i	More energy is released by forming bonds than energy required when breaking bonds \checkmark	1	ORA Response needs link between energy, breaking and making bonds ALLOW 'bond breaking is endothermic' AND 'bond making is exothermic' ALLOW within labelled energy diagram Examiner's Comments Able candidates provided well- constructed and structured responses, which demonstrated their clear understanding of this key concept. Weaker candidates often responded in terms of bond making requiring energy and that breaking bonds releasing energy. Many responses referred to more bonds instead of more energy.
	ii	FIRST, CHECK THE ANSWER ON ANSWER LINE IF bond enthalpy $=(+) 612\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ award 3 marks IF bond enthalpy $=(-) 316\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ award 2 marks	3	FULL ANNOTATIONS MUST BE USED

3.2.1 Enthalpy Changes

		Energy for bonds made ($4 \times \mathrm{C}=\mathrm{O}+4$ $\times \mathrm{O}-\mathrm{H}$) $\begin{array}{ll} & 4 \times 805+4 \times 464 \\ \text { OR } & 3220+1856 \\ \text { OR } & 5076(\mathrm{~kJ}) \checkmark \end{array}$ Energy for bonds broken ($4 \times \mathrm{C}-\mathrm{H}+3$ $\times \mathrm{O}=\mathrm{O}$) $4 \times 413+3 \times 498$ OR $\quad 1652+1494$ OR $3146(k J) \checkmark$ $C=C$ bond enthalpy correctly calculated $\begin{array}{ll} \mathrm{C}=\mathrm{C} \text { bond enthalpy } \quad & =-1318-3146 \\ & +5076 \\ & =(+) 612 \mathrm{~kJ} \mathrm{~mol}^{-1} \checkmark \end{array}$ Mark is for answer		IGNORE sign IGNORE sign ALLOW ECF DO NOT ALLOW - sign COMMON ERRORS $\begin{array}{ll} +2106 & \text { omission of } 30=0 \\ -3248 & -1318+3146-5076 \end{array}$ 2 marks Examiner's Comments This question tested both chemical and mathematical ability. Two marks were available for calculating the energies involved in bond making and bond breaking. Many candidates miscounted the number of bonds involved in the calculation, especially for $3 \times$ $\mathrm{O}=\mathrm{O}$ and $4 \times \mathrm{O}-\mathrm{H}$. Candidates can avoid this error by drawing out each molecule and counting the bonds being broken and made. In calculating the bond enthalpy, weaker candidates often omitted the enthalpy change of reaction, $-1318 \mathrm{~kJ} \mathrm{~mol}^{-1}$, instead simply subtracting the energies already calculated for bonds broken and bonds made. Answer: $612 \mathrm{~kJ} \mathrm{~mol}^{-1}$
		Total	4	
7	a	FIRST, CHECK THE ANSWER ON ANSWER LINE IF enthalpy change $=\mathbf{- 3 9 1 9 . 5}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$ award 3 marks IF enthalpy change	3	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC IF there is an alternative answer, check to see if there is any ECF credit possible

3.2.1 Enthalpy Changes

3.2.1 Enthalpy Changes

3.2.1 Enthalpy Changes

3.2.1 Enthalpy Changes

			Catalyst lowers the activation energy (by providing an alternative route) \checkmark QWC - (With a catalyst a) greater proportion of molecules with energy greater than activation energy OR (With a catalyst a) greater proportion of molecules with energy equal to the activation energy OR (With a catalyst there is a) greater area under curve above the activation energy \checkmark		DO NOT ALLOW two curves DO NOT ALLOW a curve that bends up at the end by more than one small square ALLOW particles instead of molecules on y axis DO NOT ALLOW enthalpy for x-axis label DO NOT ALLOW atoms instead of particles or molecules ALLOW ECF for the subsequent use of atoms (instead of molecules or particles) ALLOW annotations on Boltzmann distribution diagram QWC requires more molecules have / exceed activation energy / $E_{\text {a }}$. IGNORE more molecules have enough energy to react for the QWC mark (as not linked to E_{a}) ORA if states the effect with no catalyst IGNORE (more) successful collisions Examiner's Comments Candidates are very familiar with the Boltzmann distribution curve and there were many examples of excellent diagrams. The majority of candidates scored maximum marks in this part. Failure to identify that more molecules have an energy greater than the activaction energy when a catalyst is used, was a common reason why only three marks were scored.
			Total	7	
9	a	i	IF $\Delta H_{r}=-347\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ award 4 marks IF $\Delta H_{r}=(+) 347\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ award 3 marks (incorrect sign) Moles Amount, $n\left(\mathrm{CuSO}_{4}\right)$, calculated correctly $=0.0125(\mathrm{~mol})$ Energy q calculated correctly $=4336.75(\mathrm{~J})$ OR $4.33675(\mathrm{~kJ}) \checkmark$	4	ANNOTATE ANSWER WITH TICKS AND CROSSES Note: $q=25.0 \times 4.18 \times 41.5$ ALLOW 3 SF up to calculator value of 4336.75

3.2.1 Enthalpy Changes

		Calculating $\boldsymbol{\Delta H}$ correctly calculates $\Delta H^{\text {in }} \mathrm{kJ} \mathrm{mol}^{-1}$ to 3 or more sig figs \checkmark Rounding and Sign calculated value of ΔH rounded to 3 sig. fig. with minus $\operatorname{sign} \checkmark$		J IGNORE sign IGNORE working Note: from 4336.75 J and $0.0125 \mathrm{~mol} \Delta H=(-$) $346.940 \mathrm{~kJ} \mathrm{~mol}^{-1}$ IGNORE sign at this intermediate stage ALLOW ECF from $n\left(\mathrm{CuSO}_{4}\right)$ and / or energy released Final answer must have correct sign and three sig figs Answer is still -347 from rounding of q to 4340 J Examiner's Comments Almost all candidates recognised the first step of this unstructured calculation was to use the $m c \Delta T$ expression to determine the energy change. The majority of the cohort subsequently divided this by the moles of CuSO_{4} to obtain a value for ΔH_{r}. A significant proportion of responses did not include a sign for the enthalpy change and so only scored three marks. A small number of candidates gave incomplete responses, often rounding the energy change to three significant figures, rather than processing it further. Answer: $\mathbf{- 3 4 7} \mathrm{kJ} \mathrm{mol}^{-1}$
	ii	Minimum mass $=0.0125 \times 24.3 \times 1.25=0.38(0) \mathrm{g} \checkmark$	3	ALLOW ECF for mass correctly rounded to 2 dp from incorrect moles of CuSO_{4} in 3(a)(i) Examiner's Comments The majority of candidates were able to link the moles of CuSO_{4} with the balanced equation to determine the moles of Mg reacting and hence suggest a mass. However, only the strongest candidates were able to scale the quantity required to take into account the excess.
b	i	(enthalpy change that occurs) when one mole of a substance \checkmark	3	ALLOW energy required OR energy released ALLOW one mole of a compound OR one mole of an element ALLOW combusts in excess oxygen

3.2.1 Enthalpy Changes

		completely combusts OR reacts fully with oxygen \checkmark $\begin{aligned} & 298 \mathrm{~K} / 25^{\circ} \mathrm{C} \text { AND } 1 \mathrm{~atm} / 100 \mathrm{kPa} / 101 \mathrm{kPa} / 10^{5} \mathrm{~Pa} \\ & \text { / } 1 \mathrm{bar} \sqrt{ } \text {. } \end{aligned}$		ALLOW burns in excess oxygen Combusts in excess air is not sufficient IGNORE reference to concentration Examiner's Comments This definition is well known by candidates and the majority scored all three marks. A significant proportion of the cohort only scored two as the standard conditions were often omitted. Candidates should be encouraged to read questions carefully to ensure they include all the required information in their responses.
	ii	IF answer = -281 ($\mathrm{kJ} \mathrm{mol}^{-1}$), award 2 marks IF answer = (+)281 (kJ mol$\left.{ }^{-1}\right)$, award 1 mark Working for C AND H_{2} seen anywhere $9 \times(-) 394 \text { AND } 10 \times(-) 286$ OR (-)3546 AND (-)2860 OR (-)6406 \checkmark Calculates ΔH_{c} correctly $-6406--6125=-281 \mathrm{~kJ} \mathrm{~mol}^{-1} \checkmark$	2	ANNOTATE ANSWER WITH TICKS AND CROSSES IF there is an alternative answer, check to see if there is any ECF credit possible Common incorrect answers are shown below Award 1 mark for 5445 (not used $\times 9$ and $\times 10$) 2871 (not used $\times 9$) 2293 (not used $\times 10$) Examiner's Comments In general candidates approached this calculation confidently and applied Hess' law accurately. Some candidates failed to take into account the mole ratios, but subsequently processed their values correctly. Consequently the majority of candidates scored one or two marks. Answer: - $281 \mathrm{~kJ} \mathrm{~mol}^{-1}$
c	i	(Average enthalpy change) when one mole of bonds of (gaseous covalent) bonds is broken \checkmark	2	IGNORE energy required OR energy released DO NOT ALLOW bonds formed IGNORE heterolytic / homolytic Examiner's Comments Most candidates were able to recall that bond enthalpy referred to the energy change occurring when bonds are broken, but weaker responses included contradictions by also mentioning bond formation. The strongest candidates were able to state that bond enthalpy referred to one mole of bonds but a significant proportion of candidates incorrectly

3.2.1 Enthalpy Changes

				referred to one mole of molecules or made no reference to this quantity.
	ii	IF answer $=(+) 1062\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$, award 3 marks IF answer = -1062 ($\mathrm{kJ} \mathrm{mol}^{-1}$), award 2 marks \qquad (ΔH for bonds broken $=$) $2580\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ OR 1652 AND 928 ($\mathrm{kJ} \mathrm{mol}^{-1}$) \checkmark $(\Delta H$ for bonds formed $=) 1308\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \checkmark$ (bond enthalpy CO = 2580-1308-210) $=(+) 1062$ ($\mathrm{kJ} \mathrm{mol}^{-1}$) \checkmark	3	ANNOTATE ANSWER WITH TICKS AND CROSSES IGNORE sign IGNORE sign ALLOW ECF IGNORE rounding of 1062 to 1060 and credit 1062 from working Award 2 marks for $\begin{aligned} & \pm 1272 \text { (from } \pm(2580-1308)) \\ & \pm 1482 \text { (from } \pm(2580-1308+210) \text {) } \end{aligned}$ Examiner's Comments Almost all candidates were able to process the bond enthalpy data and mole ratios to arrive at values for the energy required to break bonds in the reactants and the energy released by the formation of $\mathrm{H}-\mathrm{H}$ bonds in the products. The most able candidates processed these values alongside the enthalpy change provided in the question to arrive at the correct answer. Common incorrect responses included $+1482 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $+1272 \mathrm{~kJ} \mathrm{~mol}^{-1}$, the latter of which was caused by failure to use the $\Delta \mathrm{H}$ value provided. Answer: +1062 $\mathrm{kJ} \mathrm{mol}^{-1}$.
		Total	15	
0	a	FIRST, CHECK THE ANSWER ON ANSWER LINE IF $\boldsymbol{\Delta}_{\mathrm{r}} \mathrm{H}=\mathbf{- 5 8 . 5}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$ award 4 marks Energy released in J OR kJ $=100.0 \times 4.18 \times 10.5=4389(\mathrm{~J}) \text { OR } 4.389(\mathrm{~kJ}) \checkmark$ Correctly calculates $\boldsymbol{n}\left(\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}\right)$	4	full annotations must be used \qquad ALLOW $4390 \mathrm{~J} ; 4.39 \mathrm{~kJ}$ DO NOT ALLOW less than 3 SF IGNORE units i.e. ALLOW correctly calculated number in J OR kJ

3.2.1 Enthalpy Changes

3.2.1 Enthalpy Changes

3.2.1 Enthalpy Changes

3.2.1 Enthalpy Changes

$\left.\begin{array}{|l|l|l|l|l|}\hline & & & & \begin{array}{l}\text { contradictions by also referring to bond } \\ \text { formation. The strongest candidates were able } \\ \text { to state that bond enthalpy referred to one } \\ \text { mole of bonds but it was not uncommon to see } \\ \text { answers such as 'one mole of compound' and }\end{array} \\ \text { 'one mole of substance'. }\end{array}\right]$

3.2.1 Enthalpy Changes

3.2.1 Enthalpy Changes

3.2.1 Enthalpy Changes

3.2.1 Enthalpy Changes

3.2.1 Enthalpy Changes

		OR $\pm(3832-885)$ subtraction using $\Delta \mathrm{H}$ reaction $\pm(2947-2677)= \pm 270 \checkmark$ Calculation of ΔH formation NO $270 / 3=(+) 90 \checkmark$		ALLOW ECF for dividing by 3 from working that includes at least one $\Delta \mathrm{H}_{\mathrm{f}}$ and one balancing number and $\Delta \mathrm{H}(-2677)$ for 1 mark Examiner's Comments The majority of candidates made a good attempt at this question and provided structured responses. The most common approach adopted by candidates was to use the $\Delta H f$ data given in the table and the stoichiometry ratios from the equation to calculate the difference between the reactants and products, $-2497 \mathrm{~kJ} \mathrm{~mol}^{-1}$. This value was then subtracted from the enthalpy change of the reaction to give $+270 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The strongest candidates recognised the need to divide this by three to obtain the enthalpy change of formation of NO. Some candidates carried out their subtractions in the intermediate stages incorrectly and consequently arrived at a value of -90 kJ mol^{-1}. This response received two marks. Error carried forward credit was awarded to candidates who incorrectly processed ΔH_{f} data, stoichiometric ratios and the enthalpy change of the reaction provided their final answer was divided by three. Consequently the majority of candidates scored at least one mark in this question.
		Total	12	
1	a	(+)182 V	1	This is the ONLY acceptable answer Examiner's Comments Most candidates were able to correctly process the E_{a} and ΔH values provided to calculate the activation energy of the reverse reaction. Some candidates subtracted ΔH from the E_{a} value to give an answer of 164 kJ mol^{-1}. Other candidates reversed the sign of the activation energy provided to give -173 $\mathrm{kJ} \mathrm{mol}{ }^{-1}$.
	b	Look at answer if +63 kJ AWARD 2 markslf 63 (no sign) OR-63 (incorrect sign) AWARD 1 mark No of moles of $\mathrm{HI}=14$ moles \checkmark	2	ALLOW one mark for +126 kJ Sign and value required. ALLOW ECF from incorrect number of moles

3.2.1 Enthalpy Changes

3.2.1 Enthalpy Changes

3.2.1 Enthalpy Changes

		Total	6	
1 7	a	One mole of butane completely combusts in oxygen	1	allow One mole forms CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ only
	b	FIRST CHECK THE ANSWER ON THE ANSWER LINE IF answer $=+215\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ award 2 marks IF answer $=-215\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ award 1 mark $\text { RHS }\left(-2877+(2 x-2058)=(-) 6993\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)(1)\right.$ $\left(\Delta_{r} H=\right)-6778+(+6993)=+215\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)(1)$	2	ignore incorrect sign at this stage sign required for final answer
		Total	3	

